1,079
Views
10
CrossRef citations to date
0
Altmetric
Soil biology

Variation of Q10 values in a fenced and a grazed grassland on the loess plateau, northwestern China

, , , &
Pages 629-640 | Received 24 Sep 2014, Accepted 28 Mar 2015, Published online: 27 Apr 2015

REFERENCES

  • Allison SD, Wallenstein MD, Bradford MA 2010: Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci., 3, 336–340. doi:10.1038/ngeo846
  • Bardgett RD, Wardle DA 2003: Herbivore-mediated linkages between aboveground and belowground communities. Ecology, 84, 2258–2268. doi:10.1890/02-0274
  • Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP 1998: Roots exert a strong influence on the temperature sensitivityof soil respiration. Nature, 396, 570–572. doi:10.1038/25119
  • Bosatta E, Ågren GI 1999: Soil organic matter quality interpreted thermodynamically. Soil Biol. Biochem., 31, 1889–1891. doi:10.1016/S0038-0717(99)00105-4
  • Bradford MA, Davies CA, Frey SD, Maddox TR, Melillo JM, Mohan JE, Reynolds JF, Treseder KK, Wallenstein MD 2008: Thermal adaptation of soil microbial respiration to elevated temperature. Ecol. Lett., 11, 1316–1327. doi:10.1111/ele.2008.11.issue-12
  • Chen H, Tian H-Q 2005: Does a general temperature-dependent Q10 model of soil respiration exist at biome and global scale? J. Integr. Plant Biol., 47, 1288–1302. doi:10.1111/jipb.2005.47.issue-11
  • Conant RT, Drijber RA, Haddix ML, Parton WJ, Paul EA, Plante AF, Six J, Steinweg JM 2008: Sensitivity of organic matter decomposition to warming varies with its quality. Glob Change Biol., 14, 868–877. doi:10.1111/gcb.2008.14.issue-4
  • Conant RT, Ryan MG, Ågren GI et al. 2011: Temperature and soil organic matter decomposition rates - synthesis of current knowledge and a way forward. Glob Change Biol., 17, 3392–3404. doi:10.1111/j.1365-2486.2011.02496.x
  • Conen F, Leifeld J, Seth B, Alewell C 2006: Warming mineralises young and old soil carbon equally. Biogeosciences, 3, 515–519. doi:10.5194/bg-3-515-2006
  • Cornwell WK, Cornelissen JH, Amatangelo K et al. 2008: Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett., 11, 1065–1071. doi:10.1111/j.1461-0248.2008.01219.x
  • Craine J, Spurr R, McLauchlan K, Fierer N 2010: Landscape-level variation in temperature sensitivity of soil organic carbon decomposition. Soil Biol. Biochem., 42, 373–375. doi:10.1016/j.soilbio.2009.10.024
  • Craine JM, Fierer N, McLauchlan KK, Elmore AJ 2013: Reduction of the temperature sensitivity of soil organic matter decomposition with sustained temperature increase. Biogeochemistry, 113, 359–368. doi:10.1007/s10533-012-9762-8
  • Craine JM, Gelderman TM 2011: Soil moisture controls on temperature sensitivity of soil organic carbon decomposition for a mesic grassland. Soil Biol. Biochem., 43, 455–457. doi:10.1016/j.soilbio.2010.10.011
  • Curiel Yuste J, Janssens IA, Carrara A, Ceulemans R 2004: Annual Q10 of soil respiration reflects plant phenological patterns as well as temperature sensitivity. Glob. Change Biol., 10, 161–169. doi:10.1111/gcb.2004.10.issue-2
  • Davidson EA, Janssens IA 2006: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165–173. doi:10.1038/nature04514
  • Davidson EA, Janssens IA, Luo Y 2006: On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Glob. Change Biol., 12, 154–164. doi:10.1111/gcb.2006.12.issue-2
  • Dijkstra FA, Cheng W 2007: Interactions between soil and tree roots accelerate long-term soil carbon decomposition. Ecol. Lett., 10, 1046–1053. doi:10.1111/j.1461-0248.2007.01095.x
  • Eliasson PE, McMurtrie RE, Pepper DA, Stromgren M, Linder S, Agren GI 2005: The response of heterotrophic CO2 flux to soil warming. Glob. Change Biol., 11, 167–181. doi:10.1111/gcb.2005.11.issue-1
  • Fang C, Smith P, Smith J 2006: Is resistant soil organic matter more sensitive to temperature than the labile organic matter? Biogeosciences, 3, 65–68. doi:10.5194/bg-3-65-2006
  • Fang CM, Smith P, Moncrieff JB, Smith JU 2005: Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature, 433, 57–59. doi:10.1038/nature03138
  • Feng XJ, Simpson MJ 2008: Temperature responses of individual soil organic matter components. J. Geophys. Res., 113(G3).
  • Fierer N, Colman BP, Schimel JP, Jackson RB 2006: Predicting the temperature dependence of microbial respiration in soil: a continental-scale analysis. Glob. Biogeochem. Cy., 20, GB3026. doi:10.1029/2005GB002644
  • Fierer N, Craine JM, McLauchlan K, Schimel JP 2005: Litter quality and the temperature sensitivity of decomposition. Ecology, 86, 320–326. doi:10.1890/04-1254
  • Gaumont-Guay D, Black TA, Barr AG, Jassal RS, Nesic Z 2008: Biophysical controls on rhizospheric and heterotrophic components of soil respiration in a boreal black spruce stand. Tree Physiol., 28, 161–171. doi:10.1093/treephys/28.2.161
  • Gaumont-Guay D, Black TA, Griffis TJ, Barr AG, Jassal RS, Nesic Z 2006: Interpreting the dependence of soil respiration on soil temperature and water content in a boreal aspen stand. Agr. Forest Meteorol., 140, 220–235. doi:10.1016/j.agrformet.2006.08.003
  • Giardina CP, Ryan MG 2000: Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature, 404, 858–861. doi:10.1038/35009076
  • Hakkenberg R, Churkina G, Rodeghiero M, Börner A, Steinhof A, Cescatti A 2008: Temperature sensitivity of the turnover times of soil organic matter in forests. Ecol. Appl., 18, 119–131. doi:10.1890/06-1034.1
  • Hanson P, Edwards N, Garten C, Andrews J 2000: Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry, 48, 115–146. doi:10.1023/A:1006244819642
  • Hartley IP, Hopkins DW, Garnett MH, Sommerkorn M, Wookey PA 2008: Soil microbial respiration in arctic soil does not acclimate to temperature. Ecol. Lett., 11, 1092–1100. doi:10.1111/j.1461-0248.2008.01223.x
  • Hartley IP, Ineson P 2008: Substrate quality and the temperature sensitivity of soil organic matter decomposition. Soil Biol. Biochem., 40, 1567–1574. doi:10.1016/j.soilbio.2008.01.007
  • Högberg P 2010: Is tree root respiration more sensitive than heterotrophic respiration to changes in soil temperature? New Phytol., 188, 9–10. doi:10.1111/j.1469-8137.2010.03366.x
  • Hogberg P, Read DJ 2006: Towards a more plant physiological perspective on soil ecology. Trends Ecol. Evol., 21, 548–554. doi:10.1016/j.tree.2006.06.004
  • Holland EA, Neff JC, Townsend AR, McKeown B 2000: Uncertainties in the temperature sensitivity of decomposition in tropical and subtropical ecosystems: implications for models. Global Biogeochem. Cy., 14, 1137–1151. doi:10.1029/2000GB001264
  • IPCC 2007: Climate change 2007-the physical science basis: working group I contribution to the fourth assessment report of the IPCC, Cambridge University Press.
  • Irvine J, Law BE, Martin JG, Vickers D 2008: Interannual variation in soil CO2 efflux and the response of root respiration to climate and canopy gas exchange in mature ponderosa pine. Glob. Change Biol., 14, 2848–2859. doi:10.1111/j.1365-2486.2008.01682.x
  • Janssens IA, Pilegaard K 2003: Large seasonal changes in Q10 of soil respiration in a beech forest. Glob. Change Biol., 9, 911–918. doi:10.1046/j.1365-2486.2003.00636.x
  • Jenkinson D, Adams D, Wild A 1991: Model estimates of CO2 emissions from soil in response to global warming. Nature, 351, 304–306. doi:10.1038/351304a0
  • Jia X, Zha TS, Wu B et al. 2013: Temperature response of soil respiration in a Chinese pine plantation: hysteresis and seasonal vs. diel Q10. PLoS One, 8, e57858.
  • Jones CD, Cox P, Huntingford C 2003: Uncertainty in climate-carbon-cycle projections associated with the sensitivity of soil respiration to temperature. Tellus B, 55, 642–648. doi:10.1034/j.1600-0889.2003.01440.x
  • Kirschbaum MUF 1995: The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol. Biochem., 27, 753–760. doi:10.1016/0038-0717(94)00242-S
  • Kirschbaum MUF 2004: Soil respiration under prolonged soil warming: are rate reductions caused by acclimation or substrate loss? Glob. Change Biol., 10, 1870–1877. doi:10.1111/j.1365-2486.2004.00852.x
  • Kirschbaum MUF 2006: The temperature dependence of organic-matter decomposition-still a topic of debate. Soil Biol. Biochem., 38, 2510–2518. doi:10.1016/j.soilbio.2006.01.030
  • Knorr W, Prentice I House J, Holland E 2005: Long-term sensitivity of soil carbon turnover to warming. Nature, 433, 298–301. doi:10.1038/nature03226
  • Leifeld J, Fuhrer J 2005: The temperature response of CO2 production from bulk soils and soil fractions is related to soil organic matter quality. Biogeochemistry, 75, 433–453. doi:10.1007/s10533-005-2237-4
  • Lenton TM, Huntingford C 2003: Global terrestrial carbon storage and uncertainties in its temperature sensitivity examined with a simple model. Glob. Change Biol., 9, 1333–1352. doi:10.1046/j.1365-2486.2003.00674.x
  • Li XD, Fu H, Guo D, Li XD, Wan CG 2010: Partitioning soil respiration and assessing the carbon balance in a Setaria italica (L.) Beauv. Cropland on the Loess Plateau, Northern China. Soil Biol. Biochem., 42, 337–346. doi:10.1016/j.soilbio.2009.11.013
  • Lloyd J, Taylor J 1994: On the temperature dependence of soil respiration. Funct. Ecol, 315–323.
  • Luan JW, Liu SR, Wang JX, Zhu XL 2013: Factors affecting spatial variation of annual apparent Q10 of soil respiration in two warm temperate forests. PLoS One, 8, e64167.
  • Mahecha MD, Reichstein M, Carvalhais Net al. 2010: Global convergence in the temperature sensitivity of respiration at ecosystem level. Science, 329, 838–840. doi:10.1126/science.1189587
  • Mo JM, Zhang W, Zhu WX, Gundersen P, Fang Y, Li D, Wang H 2007: Nitrogen addition reduces soil respiration in a mature tropical forest in southern China. Glob. Change Biol., 14, 403–412. doi:10.1111/j.1365-2486.2007.01503.x
  • Moyano FE, Kutsch WL, Schulze E 2007: Response of mycorrhizal, rhizosphere and soil basal respiration to temperature and photosynthesis in a barley field. Soil Biol. Biochem., 39, 843–853. doi:10.1016/j.soilbio.2006.10.001
  • Pang X, Bao W, Zhu B, Cheng W 2013: Responses of soil respiration and its temperature sensitivity to thinning in a pine plantation. Agr. Forest Meteorol., 171-172, 57–64. doi:10.1016/j.agrformet.2012.12.001
  • Paz-Ferreiro J, Medina-Roldán E, Ostle NJ, McNamara NP, Bardgett RD 2012: Grazing increases the temperature sensitivity of soil organic matter decomposition in a temperate grassland. Environ. Res. Lett., 7, 014027.
  • Peng SS, Piao SL, Wang T, Sun JY, Shen ZH 2009: Temperature sensitivity of soil respiration in different ecosystems in China. Soil Biol. Biochem., 41, 1008–1014. doi:10.1016/j.soilbio.2008.10.023
  • Qi Y, Xu M, Wu JG 2002: Temperature sensitivity of soil respiration and its effects on ecosystem carbon budget: nonlinearity begets surprises. Ecol. Model., 153, 131–142. doi:10.1016/S0304-3800(01)00506-3
  • Raich JW, Schlesinger WH 1992: The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B, 44, 81–99. doi:10.1034/j.1600-0889.1992.t01-1-00001.x
  • Reichstein M, Falge E, Baldocchi D et al. 2005a: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob. Change Biol., 11, 1424–1439. doi:10.1111/j.1365-2486.2005.001002.x
  • Reichstein M, Rey A, Freibauer A et al. 2003: Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Glob. Biogeochem. Cy., 17, 1104. doi:10.1029/2003GB002035
  • Reichstein M, Subke J-A, Angeli AC, Tenhunen JD 2005b: Does the temperature sensitivity of decomposition of soil organic matter depend upon water content, soil horizon, or incubation time? Glob. Change Biol., 11, 1754–1767. doi:10.1111/gcb.2005.11.issue-10
  • Ruehr NK, Buchmann N 2010: Soil respiration fluxes in a temperate mixed forest: seasonality and temperature sensitivities differ among microbial and root-rhizosphere respiration. Tree Physiol., 30, 165–176. doi:10.1093/treephys/tpp106
  • Sampson DA, Janssens IA, Curiel Yuste J, Ceulemans R 2007: Basal rates of soil respiration are correlated with photosynthesis in a mixed temperate forest. Glob. Change Biol., 13, 2008–2017. doi:10.1111/gcb.2007.13.issue-9
  • Singh B, Nordgren A, Ottosson Löfvenius M, Högberg M, Mellander PE, Högberg P 2003: Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest: extending observations beyond the first year. Plant Cell Environ., 26, 1287–1296. doi:10.1046/j.1365-3040.2003.01053.x
  • Subke J-A, Voke NR, Leronni V, Garnett MH, Ineson P 2011: Dynamics and pathways of autotrophic and heterotrophic soil CO2 efflux revealed by forest girdling. J. Ecol., 99, 186–193. doi:10.1111/jec.2010.99.issue-1
  • Suh S, Lee E, Lee J 2009: Temperature and moisture sensitivities of CO2 efflux from lowland and alpine meadow soils. J. Plant Ecol., 2, 225–231. doi:10.1093/jpe/rtp021
  • Suseela V, Conant RT, Wallenstein MD, Dukes JS 2012: Effects of soil moisture on the temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change experiment. Glob. Change Biol., 18, 336–348. doi:10.1111/j.1365-2486.2011.02516.x
  • Tian H, Melillo J, Kicklighter D, McGuire A, Helfrich J 1999: The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States. Tellus B, 51, 414–452. doi:10.1111/teb.1999.51.issue-2
  • Tu L-H, Hu T-X, Zhang J, Li R-H, Dai H-Z, Luo S-H 2011: Short-term simulated nitrogen deposition increases carbon sequestration in a Pleioblastus amarus plantation. Plant Soil, 340, 383–396. doi:10.1007/s11104-010-0610-0
  • Vargas R, Baldocchi DD, Allen MF et al. 2010: Looking deeper into the soil: biophysical controls and seasonal lags of soil CO2 production and efflux. Ecol. Appl., 20, 1569–1582. doi:10.1890/09-0693.1
  • Wang XH, Piao SL, Ciais P, Janssens IA, Reichstein M, Peng S, Wang T 2010: Are ecological gradients in seasonal Q10 of soil respiration explained by climate or by vegetation seasonality? Soil Biol. Biochem., 42, 1728–1734. doi:10.1016/j.soilbio.2010.06.008
  • Wayne PH, Frank AB, Sanabria J, Phillips RL 2008: Interannual variability in carbon dioxide fluxes and flux-climate relationships on grazed and ungrazed northern mixed-grass prairie. Glob. Change Biol., 14, 1620–1632. doi:10.1111/j.1365-2486.2008.01599.x
  • Xu M, Qi Y 2001a: Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California. Glob. Change Biol., 7, 667–677. doi:10.1046/j.1354-1013.2001.00435.x
  • Xu M, Qi Y 2001b: Spatial and seasonal variations of Q10 determined by soil respiration measurements at a Sierra Nevadan forest. Glob. Biogeochem. Cy., 15, 687–696. doi:10.1029/2000GB001365

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.