2,768
Views
43
CrossRef citations to date
0
Altmetric
ICOBTE 2015 Special Section papers

Low-cadmium rice (Oryza sativa L.) cultivar can simultaneously reduce arsenic and cadmium concentrations in rice grains

, , , , , , , , , , , & show all
Pages 327-339 | Received 05 Nov 2015, Accepted 18 Jan 2016, Published online: 09 Mar 2016

References

  • Ahmed ZU, Panaullah GM, Gauch H, McCouch SR, Tyagi W, Kabir MS, Duxbury JM 2011: Genotype and environment effects on rice (Oryza sativa L.) grain arsenic concentration in Bangladesh. Plant Soil, 338, 367–382. doi:10.1007/s11104-010-0551-7
  • Arao T, Kawasaki A, Baba K, Mori S, Matsumoto S 2009: Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice. Environ. Sci. Technol., 43, 9361–9367. doi:10.1021/es9022738
  • Baba K, Arao T, Yamaguchi N, Watanabe E, Eun H, Ishizaka M 2014: Chromatographic separation of arsenic species with pentafluorophenyl column and application to rice. J. Chromatogr. A, 1354, 109–116. doi:10.1016/j.chroma.2014.05.072
  • Blakemore L, Searle P, Daly B 1981: Methods for chemical analysis of soils. New Zealand Soil Bureau Scientific Report 10A, New Zealand.
  • Bolan NS, Makino T, Kunhikrishnan A, Kim PJ, Ishikawa S, Murakami M, Naidu R, Kirkham MB 2013: Cadmium contamination and its risk management in rice ecosystems. Adv. Agron., 119, 183–273. doi:10.1016/B978-0-12-407247-3.00004-4
  • Chiba M, Matsumura O, Terao T, Takahashi Y, Watanabe H 2011: Mechanism of high quality rice production in deep-flood irrigation. J. J. Crop Sci., 80, 13–20. doi:10.1626/jcs.80.13 (in Japanese with English summary).
  • Classification Committee of Cultivated Soils 1996: Classification of Cultivated Soils in Japan — third Approximation. National Institute for Agro-Environmental Science, Tsukuba.
  • Codex Alimentarius Commission 2014: CODEX STAN 193-1995, General standard for contaminants and toxins in food and feed. http://foodnara.go.kr/codex/download.do?addPath=/hubfiles/codex/data2&fileName=STAN%20193-1995.pdf&fileNameOri=STAN%20193-1995.pdf ( Available at October 2015)
  • Gambrell RP 1996: Manganese. In Methods of Soil Analysis Part3, Chemical methods, eds. Sparks, DL et al., pp. 665–682. Soil Science Society of America, Inc., Madison.
  • Garrity DP, O’Toole JC 1995: Selection for reproductive stage drought avoidance in rice, using infrared thermometry. Agron. J., 87, 773–779. doi:10.2134/agronj1995.00021962008700040027x
  • Gee GW, Bauder JW 1986: Particle size analysis. In Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods, ed. Klute, A, pp. 383–411. American Society of Agronomy, Soil Science Society of America, Madison.
  • Grant CA, Bailey LD, McLaughlin MJ, Singh BR 1999: Management factors which influence cadmium concentrations in crops. In Cadmium in Soil and Plants, eds. McLaughlin, MJ, Singh, BR, pp. 151–198. Kluwer Academic Publishers, the Netherlands.
  • Hu PJ, Huang JX, Ouyang YNet al. 2013: Water management affects arsenic and cadmium accumulation in different rice cultivars. Environ. Geochem. Health, 35, 767–778. doi:10.1007/s10653-013-9533-z
  • Ishikawa S, Ae N, Murakami M, Wagatsuma T 2006: Is Brassica juncea a suitable plant for phytoremediation of cadmium in soils with moderately low cadmium contamination? Possibility of using other plant species for Cd-phytoextraction. Soil Sci. Plant Nutr, 52, 32–42. doi:10.1111/j.1747-0765.2006.00008.x
  • Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa NK, Nakanishi H 2012: Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proc. Natl. Acad. Sci. U. S. A., 109, 19166–19171. doi:10.1073/pnas.1211132109
  • Islam FS, Gault AG, Boothman C, Polya DA, Charnock JM, Chatterjee D, Lloyd JR 2004: Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature, 430, 68–71. doi:10.1038/nature02638
  • Jones JB Jr 1998: The Micronutrients. In PLANT NUTRITION Manual, ed. Jones Jr., JB, pp. 55–76. CRC Press, New York.
  • Kuramata M, Abe T, Kawasaki A, Ebana K, Shibaya T, Yano M, Ishikawa S 2013: Genetic diversity of arsenic accumulation in rice and QTL analysis of methylated arsenic in rice grains. Rice, 6, 3. doi:10.1186/1939-8433-6-3
  • Kuramata M, Abe T, Matsumoto S, Ishikawa S 2011: Arsenic accumulation and speciation in Japanese paddy rice cultivars. Soil Sci. Plant Nutr, 57, 248–258. doi:10.1080/00380768.2011.565479
  • Linquist BA, Anders MM, Adviento-Borbe MAA, Chaney RL, Nalley LL, Da Rosa EFF, Van Kessel C 2015: Reducing greenhouse gas emissions, water use, and grain arsenic levels in rice systems. Global Change Biol, 21, 407–417. doi:10.1111/gcb.12701
  • Liu CP, Yu H-Y, Liu CS, Lie FB, Xu XH, Wang Q 2015: Arsenic availability in rice from a mining area: is amorphous iron oxide-bound arsenic a source or sink? Environ. Pollut, 199, 95–101. doi:10.1016/j.envpol.2015.01.025
  • Lombi E, Sletten RS, Wenzel WW 2000: Sequentially extracted arsenic from different size fractions of contaminated soils. Water Air Soil Poll, 124, 319–332. doi:10.1023/A:1005230628958
  • Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao FJ 2008: Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc. Natl. Acad. Sci. U. S. A., 105, 9931–9935. doi:10.1073/pnas.0802361105
  • MAFF (Ministry of Agriculture, Forestry and Fisheries of Japan) 2014: Survey of arsenic levels in brown rice and polished rice produced in Japan. http://www.maff.go.jp/j/press/syouan/nouan/pdf/140221-01.pdf (in Japanese, available at October, 2015)
  • Makino T, Sugahara K, Sakurai Y, Takano H, Kamiya T, Sasaki K, Itou T, Sekiya N 2006: Remediation of cadmium contamination in paddy soils by washing with chemicals: Selection of washing chemicals. Environ. Pollut., 144, 2–10. doi:10.1016/j.envpol.2006.01.017
  • Meharg AA, Norton G, Deacon Cet al. 2013: Variation in rice cadmium related to human exposure. Environ. Sci. Technol., 47, 5613–5618. doi:10.1021/es400521h
  • Minamikawa K, Fumoto T, Itoh M, Hayano M, Sudo S, Yagi K 2014: Potential of prolonged midseason drainage for reducing methane emission from rice paddies in Japan: a long-term simulation using the DNDC-rice model. Biol Fert Soils, 50, 879–889. doi:10.1007/s00374-014-0909-8
  • Moreno-Jiménez E, Meharg AA, Smolders E, Manzano R, Becerra D, Sanchez-Llerena J, Albarran A, Lopez-Pinero A 2014: Sprinkler irrigation of rice fields reduces grain arsenic but enhances cadmium. Sci. Total Environ., 485, 468–473. doi:10.1016/j.scitotenv.2014.03.106
  • Nonaka K, Takahashi K 1988: A method of measuring available silicates in paddy soils. Jpn. Agric. Res. Q., 22, 91–95.
  • Norton GJ, Duan GL, Dasgupta Tet al. 2009: Environmental and genetic control of arsenic accumulation and speciation in rice grain: comparing a range of common cultivars grown in contaminated sites across Bangladesh, China, and India. Environ. Sci. Technol., 43, 8381–8386. doi:10.1021/es901844q
  • Sahoo PK, Kim K 2013: A review of the arsenic concentration in paddy rice from the perspective of geoscience. Geosci. J., 17, 107–122. doi:10.1007/s12303-013-0004-4
  • Seyfferth AL, Webb SM, Andrews JC, Fendorf S 2011: Defining the distribution of arsenic species and plant nutrients in rice (Oryza sativa L.) from the root to the grain. Geochim. Cosmochim. Ac., 75, 6655–6671. doi:10.1016/j.gca.2011.06.029
  • Spanu A, Daga L, Orlandoni AM, Sanna G 2012: The role of irrigation techniques in arsenic bioaccumulation in rice (Oryza sativa L.). Environ. Sci. Technol., 46, 8333–8340. doi:10.1021/es300636d
  • Sumner ME, Miller WP 1996: Cation exchange capacity and exchange coefficients. In Methods of Soil Analysis Part3, Chemical Methods, Eds. Sparks, DL et al., pp. 1201–1229. Soil Science Society of America, Inc., Madison.
  • Takahashi Y, Minamikawa R, Hattori KH, Kurishima K, Kihou N, Yuita K 2004: Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods. Environ. Sci. Technol., 38, 1038–1044. doi:10.1021/es034383n
  • Takata Y, Ito T, Ohkura T, Obara H, Kohyama K, Shirato Y 2011: Phosphate adsorption coefficient can improve the validity of RothC model for Andosols. Soil Sci. Plant Nutr., 57, 421–428. doi:10.1080/00380768.2011.584510
  • Takeuchi Y, Hori K, Suzuki K et al. 2008, Major QTLs for eating quality of an elite Japanese rice cultivar, Koshihikari, on the short arm of chromosome 3. Breed. Sci, 58, 437–445. doi:10.1270/jsbbs.58.437
  • Williams PN, Villada A, Deacon C, Raab A, Figuerola J, Green AJ, Feldmann J, Meharg AA 2007: Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environ. Sci. Technol., 41, 6854–6859. doi:10.1021/es070627i
  • Yamaguchi N, Ohkura T, Takahashi Y, Maejima Y, Arao T 2014: Arsenic distribution and speciation near rice roots influenced by iron plaques and redox conditions of the soil matrix. Environ. Sci. Technol., 48, 1549–1556. doi:10.1021/es402739a
  • Yamaji N, Sasaki A, Xia JX, Yokosho K, Ma JF 2013: A node-based switch for preferential distribution of manganese in rice. Nat. Commun, 4, 2442. doi:10.1038/ncomms3442

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.