1,233
Views
31
CrossRef citations to date
0
Altmetric
ICOBTE 2015 Special Section papers

Enhanced arsenic sensitivity with excess phytochelatin accumulation in shoots of a SULTR1;2 knockout mutant of Arabidopsis thaliana (L.) Heynh

, , , &
Pages 367-372 | Received 06 Sep 2015, Accepted 02 Feb 2016, Published online: 01 Mar 2016

References

  • Abedin MJ, Cotter-Howells J, Meharg AA 2002: Arsenic uptake and accumulation in rice (Oryza sativa L.) irrigated with contaminated water. Plant Soil, 240, 311–319. doi:10.1023/A:1015792723288
  • Barberon M, Berthomieu P, Clairotte M, Shibagaki N, Davidian JC, Gosti F 2008: Unequal functional redundancy between the two Arabidopsis thaliana high-affinity sulfate transporters SULTR1; 1 and SULTR1; 2. New Phytol., 180, 608–619. doi:10.1111/j.1469-8137.2008.02604.x
  • Chao DY, Chen Y, Chen J, Shi S, Chen Z, Wang C, Danku JM, Zhao FJ, Salt DE 2014: Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants. PLoS Biol., 12, e1002009. doi:10.1371/journal.pbio.1002009
  • Clemens S 2006: Evolution and function of phytochelatin synthases. J. Plant Physiol., 163, 319–332. doi:10.1016/j.jplph.2005.11.010
  • Clemens S, Kim EJ, Neumann D, Schroeder JI 1999: Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J., 18, 3325–3333. doi:10.1093/emboj/18.12.3325
  • Fischer S, Kühnlenz T, Thieme M, Schmidt H, Clemens S 2014: Analysis of plant Pb tolerance at realistic submicromolar concentrations demonstrates the role of phytochelatin synthesis for Pb detoxification. Environ. Sci. Technol., 48, 7552–7559. doi:10.1021/es405234p
  • Fujiwara T, Hirai MY, Chino M, Komeda Y, Naito S 1992: Effects of sulfur nutrition on expression of the soybean seed storage protein genes in transgenic petunia. Plant Physiol., 99, 263–268. doi:10.1104/pp.99.1.263
  • Grill E, Winnacker E-L, Zenk MH 1985: Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science, 230, 674–676. doi:10.1126/science.230.4726.674
  • Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, O’Connell MJ, Goldsbrough PB, Cobbett CS 1999: Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe. Plant Cell, 11(6), 1153–1163. doi:10.1105/tpc.11.6.1153
  • Howden R, Goldsbrough PB, Andersen CR, Cobbett CS 1995: Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol., 107, 1059–1066. doi:10.1104/pp.107.4.1059
  • Jobe TO, Sung D-Y, Akmakjian G, Pham A, Komives EA, Mendoza-Cózatl DG, Schroeder JI 2012: Feedback inhibition by thiols outranks glutathione depletion: a luciferase-based screen reveals glutathione-deficient γ-ECS and glutathione synthetase mutants impaired in cadmium-induced sulfate assimilation. Plant J., 70, 783–795. doi:10.1111/j.1365-313X.2012.04924.x
  • Kamiya T, Islam R, Duan G, Uraguchi S, Fujiwara T 2013: Phosphate deficiency signaling pathway is a target of arsenate and phosphate transporter OsPT1 is involved in As accumulation in shoots of rice. Soil Sci. Plant Nutr., 59, 580–590. doi:10.1080/00380768.2013.804390
  • Kamiya T, Tanaka M, Mitani N, Ma JF, Maeshima M, Fujiwara T 2009: NIP1;1, an aquaporin homolog, determines the arsenite sensitivity of Arabidopsis thaliana. J. Biol. Chem., 284, 2114–2120. doi:10.1074/jbc.M806881200
  • Khan MA, Stroud JL, Zhu Y-G, McGrath SP, Zhao F-J 2010: Arsenic bioavailability to rice is elevated in Bangladeshi paddy soils. Environ. Sci. Technol., 44, 8515–8521. doi:10.1021/es101952f
  • Kühnlenz T, Schmidt H, Uraguchi S, Clemens S 2014: Arabidopsis thaliana phytochelatin synthase 2 is constitutively active in vivo and can rescue the growth defect of the PCS1-deficient cad1-3 mutant on Cd-contaminated soil. J. Exp. Bot., 65, 4241–4253. doi:10.1093/jxb/eru195
  • Lee S, Moon JS, Ko TS, Petros D, Goldsbrough PB, Korban SS 2003: Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol., 131, 656–663. doi:10.1104/pp.014118
  • Li Y, Dhankher OP, Carreira L, Lee D, Chen A, Schroeder JI, Balish RS, Meagher RB 2004: Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity. Plant Cell Physiol., 45, 1787–1797. doi:10.1093/pcp/pch202
  • Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao FJ 2008: Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc. Natl. Acad. Sci. USA, 105, 9931–9935. doi:10.1073/pnas.0802361105
  • Maruyama-Nakashita A, Inoue E, Watanabe-Takahashi A, Yamaya T, Takahashi H 2003: Transcriptome profiling of sulfur-responsive genes in Arabidopsis reveals global effects of sulfur nutrition on multiple metabolic pathways. Plant Physiol., 132, 597–605. doi:10.1104/pp.102.019802
  • Meharg AA 2004: Arsenic in rice – understanding a new disaster for South-East Asia. Trends Plant Sci., 9, 415–417. doi:10.1016/j.tplants.2004.07.002
  • Meharg AA, Hartley-Whitaker J 2002: Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol., 154, 29–43. doi:10.1046/j.1469-8137.2002.00363.x
  • Mendoza-Cózatl D, Loza-Tavera H, Hernández-Navarro A, Moreno-Sánchez R 2005: Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbial. Rev., 29, 653–671. doi:10.1016/j.femsre.2004.09.004
  • Minocha R, Thangavel P, Dhankher OP, Long S 2008: Separation and quantification of monothiols and phytochelatins from a wide variety of cell cultures and tissues of trees and other plants using high performance liquid chromatography. J. Chromatogr., 1207, 72–83. doi:10.1016/j.chroma.2008.08.023
  • Nordstrom DK 2002: Public health – worldwide occurrences of arsenic in ground water. Science, 296, 2143–2145. doi:10.1126/science.1072375
  • Panaullah GM, Alam T, Hossain MB, Loeppert RH, Lauren JG, Meisner CA, Ahmed ZU, Duxbury JM 2009: Arsenic toxicity to rice (Oryza sativa L.) in Bangladesh. Plant Soil, 317, 31–39. doi:10.1007/s11104-008-9786-y
  • Park J, Song WY, Ko D, Eom Y, Hansen TH, Schiller M, Lee TG, Martinoia E, Lee Y 2012: The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J., 69, 278–288. doi:10.1111/j.1365-313X.2011.04789.x
  • Reid R, Gridley K, Kawamata Y, Zhu Y 2013: Arsenite elicits anomalous sulfur starvation responses in barley. Plant Physiol., 162, 401–409. doi:10.1104/pp.113.216937
  • Sánchez-Bermejo E, Castrillo G, Del Llano B et al. 2014: Natural variation in arsenate tolerance identifies an arsenate reductase in Arabidopsis thaliana. Nat. Commun., 5. doi:10.1038/ncomms5617
  • Schmöger ME, Oven M, Grill E 2000: Detoxification of arsenic by phytochelatins in plants. Plant Physiol., 122, 793–802. doi:10.1104/pp.122.3.793
  • Shibagaki N, Rose A, McDermott JP, Fujiwara T, Hayashi H, Yoneyama T, Davies JP 2002: Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots. Plant J., 29, 475–486. doi:10.1046/j.0960-7412.2001.01232.x
  • Shin H, Shin HS, Dewbre GR, Harrison MJ 2004: Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J., 39, 629–642. doi:10.1111/j.1365-313X.2004.02161.x
  • Song WY, Park J, Mendoza-Cózatl DG et al. 2010: Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc. Natl. Acad. Sci. USA, 107, 21187–21192. doi:10.1073/pnas.1013964107
  • Srivastava AK, Srivastava S, Mishra S, D’Souza SF, Suprasanna P 2014: Identification of redox-regulated components of arsenate (AsV) tolerance through thiourea supplementation in rice. Metallomics, 6, 1718–1730. doi:10.1039/C4MT00039K
  • Sung DY, Kim TH, Komives EA, Mendoza-Cózatl DG, Schroeder JI 2009: ARS5 is a component of the 26S proteasome complex, and negatively regulates thiol biosynthesis and arsenic tolerance in Arabidopsis. Plant J., 59, 802–813. doi:10.1111/j.1365-313X.2009.03914.x
  • Takahashi H, Kopriva S, Giordano M, Saito K, Hell R 2011: Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu. Rev. Plant Biol., 62, 157–184. doi:10.1146/annurev-arplant-042110-103921
  • Tennstedt P, Peisker D, Böttcher C, Trampczynska A, Clemens S 2009: Phytochelatin synthesis is essential for the detoxification of excess zinc and contributes significantly to the accumulation of zinc. Plant Physiol., 149, 938–948. doi:10.1104/pp.108.127472
  • Vatamaniuk OK, Bucher EA, Ward JT, Rea PA 2001: A new pathway for heavy metal detoxification in animals. Phytochelatin synthase is required for cadmium tolerance in Caenorhabditis elegans. J. Biol. Chem., 276, 20817–20820. doi:10.1074/jbc.C100152200
  • Vatamaniuk OK, Mari S, Lang A, Chalasani S, Demkiv LO, Rea PA 2004: Phytochelatin synthase, a dipeptidyltransferase that undergoes multisite acylation with γ-Glutamylcysteine during catalysis. Stoichiometric and site-directed mutagenic analysis of Arabidopsis thaliana PCS1-catalyzed phytochelatin synthesis. J. Biol. Chem., 279, 22449–22460. doi:10.1074/jbc.M313142200
  • Vatamaniuk OK, Mari S, Lu YP, Rea PA 2000: Mechanism of heavy metal ion activation of phytochelatin (PC) synthase Blocked thiols are sufficient for PC synthase-catalyzed transpeptidation of glutathione and related thiol peptides. J. Biol. Chem., 275, 31451–31459. doi:10.1074/jbc.M002997200
  • Wu Z, Ren H, McGrath SP, Wu P, Zhao F-J 2011: Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol., 157, 498–508. doi:10.1104/pp.111.178921
  • Yoshimoto N, Inoue E, Watanabe-Takahashi A, Saito K, Takahashi H 2007: Posttranscriptional regulation of high-affinity sulfate transporters in Arabidopsis by sulfur nutrition. Plant Physiol., 145, 378–388. doi:10.1104/pp.107.105742
  • Yoshimoto N, Takahashi H, Smith FW, Yamaya T, Saito K 2002: Two distinct high-affinity sulfate transporters with different inducibilities mediate uptake of sulfate in Arabidopsis roots. Plant J., 29, 465–473. doi:10.1046/j.0960-7412.2001.01231.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.