4,714
Views
31
CrossRef citations to date
0
Altmetric
Plant nutrition

Molecular basis of the nitrogen response in plants

, &
Pages 329-341 | Received 08 May 2017, Accepted 24 Jul 2017, Published online: 01 Aug 2017

References

  • Abiko T, Obara M 2014: Enhancement of porosity and aerenchyma formation in nitrogen-deficient rice roots. Plant Sci., 215–216, 76–83. doi:10.1016/j.plantsci.2013.10.016
  • Alboresi A, Gestin C, Leydecker M-T, Bedu M, Meyer C, Truong H-N 2005: Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant, Cell Environ., 28, 500–512. doi:10.1111/pce.2005.28.issue-4
  • Alvarez JM, Riveras E, Vidal EA et al. 2014: Systems approach identifies TGA1 and TGA4 transcription factors as important regulatory components of the nitrate response of Arabidopsis thaliana roots. Plant J., 80, 1–13. doi:10.1111/tpj.12618
  • Arth I, Frenzel P 2000: Nitrification and denitrification in the rhizosphere of rice: the detection of processes by a new multi-channel electrode. Biol. Fertil. Soils, 31, 427–435. doi:10.1007/s003749900190
  • Batak I, Dević M, Giba Z, Grubisić D, Poff KL, Konjević R 2002: The effects of potassium nitrate and NO-donors on phytochrome A- and phytochrome B-specific induced germination of Arabidopsis thaliana seeds. Seed Sci. Res., 12, 253–259. doi:10.1079/SSR2002118
  • Bloom AJ 2015: The increasing importance of distinguishing among plant nitrogen sources. Curr. Opin. Plant Biol., 25, 10–16. doi:10.1016/j.pbi.2015.03.002
  • Bloom AJ, Caldwell RM, Finazzo J, Warner RL, Weissbart J 1989: Oxygen and carbon dioxide fluxes from barley shoots depend on nitrate assimilation. Plant Physiol., 91, 352–356. doi:10.1104/pp.91.1.352
  • Boudsocq M, Sheen J 2013: CDPKs in immune and stress signaling. Trends Plant Sci., 18, 30–40. doi:10.1016/j.tplants.2012.08.008
  • Bouguyon E, Perrine-Walker F, Pervent M et al. 2016: Nitrate controls root development through posttranscriptional regulation of the NRT1.1/NPF6.3 transporter/sensor. Plant Physiol., 172, 1237–1248.
  • Brien JAO, Vega A, Bouguyon E, Krouk G, Gojon A, Coruzzi G, Gutiérrez RA 2016: Nitrate transport, sensing and responses in plants. Mol. Plant, 9, 837–856. doi:10.1016/j.molp.2016.05.004
  • Britto DT, Kronzucker HJ 2005: Nitrogen acquisition, PEP carboxylase, and cellular pH homeostasis: new views on old paradigms. Plant, Cell Environ., 28, 1396–1409. doi:10.1111/pce.2005.28.issue-11
  • Britto DT, Kronzucker HJ 2013: Ecological significance and complexity of N-source preference in plants. Ann. Bot., 112, 957–963. doi:10.1093/aob/mct157
  • Cai C, Wang J, Zhu Y, Shen Q, Li B, Tong Y, Li Z-S 2008: Gene structure and expression of the high-affinity nitrate transport system in rice roots. J. Integr. Plant Biol., 50, 443–451. doi:10.1111/j.1744-7909.2008.00642.x
  • Castaings L, Camargo A, Pocholle D et al. 2009: The nodule inception-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis. Plant J., 57, 426–435. doi:10.1111/j.1365-313X.2008.03695.x
  • Chandran AKN, Priatama RA, Kumar V, Xuan Y, Il JB, Kim CM, Jung KH, Han CD 2016: Genome-wide transcriptome analysis of expression in rice seedling roots in response to supplemental nitrogen. J. Plant Physiol., 200, 62–75. doi:10.1016/j.jplph.2016.06.005
  • Chanh TT, Ohira K 1981: Effects of various environmental and medium conditions on the response of Indica and Japonica rice plants to ammonium and nitrate nitrogen. Soil Sci. Plant Nutr., 27, 347–355. doi:10.1080/00380768.1981.10431257
  • Chanh TT, Tsutsumi M, Kurihara K 1981: Comparative study on the response of Indica and Japonica rice plants to ammonium and nitrate nitrogen. Soil Sci. Plant Nutr., 27, 83–92. doi:10.1080/00380768.1981.10431257
  • Chardin C, Girin T, Roudier F, Meyer C, Krapp A 2014: The plant RWP-RK transcription factors: key regulators of nitrogen responses and of gametophyte development. J. Exp. Bot., 65, 5577–5587. doi:10.1093/jxb/eru261
  • Chen J, Zhang Y, Tan Y, Zhang M, Zhu L, Xu G, Fan X 2016: Agronomic nitrogen-use efficiency of rice can be increased by driving OsNRT2.1 expression with the OsNAR2.1 promoter. Plant Biotechnol. J., 14, 1705–1715. doi:10.1111/pbi.2016.14.issue-8
  • Cheng C-L, Dewdney J, Kleinhofs A, Goodman HM 1986: Cloning and nitrate induction of nitrate reductase mRNA. Proc. Natl. Acad. Sci. USA, 83, 6825–6828. doi:10.1073/pnas.83.18.6825
  • Chun L, Mi G, Li J, Chen F, Zhang F 2005: Genetic analysis of maize root characteristics in response to low nitrogen stress. Plant Soil, 276, 369–382. doi:10.1007/s11104-005-5876-2
  • Clarke AL, Barley KP 1968: The uptake of nitrogen from soils in relation to solute diffusion. Aust. J. Soil Res., 6, 75–92. doi:10.1071/SR9680075
  • Colmer TD 2003: Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L.). Ann. Bot., 91, 301–309. doi:10.1093/aob/mcf114
  • Cox WJ, Reisenauer HM 1973: Growth and ion uptake by wheat supplied nitrogen as nitrate, or ammonium, or both. Plant Soil, 38, 363–380. doi:10.1007/BF00779019
  • de Magalhães JV, Alves VMC, de Novais RF, Mosquim PR, Magalhães JR, Bahia Filho AFC, Huber DM 1998: Nitrate uptake by corn under increasing periods of phosphorus starvation. J. Plant Nutr., 21, 1753–1763. doi:10.1080/01904169809365520
  • de Magalhães JV, Alves VMC, de Novais RF, Mosquim PR, Magalhães JR, Bahia Filho AFC, Huber DM 2000: Influence of phosphorus stress on ammonium uptake by maize. J. Plant Nutr., 23, 263–273. doi:10.1080/01904160009382013
  • Ding Z, Wang C, Chen S, Yu S 2011: Diversity and selective sweep in the OsAMT1;1 genomic region of rice. BMC Evol. Biol., 11, 61. doi:10.1186/1471-2148-11-61
  • Drew MC 1975: Comparison of the effects of a localized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley. New Phytol., 75, 479–490. doi:10.1111/j.1469-8137.1975.tb01409.x
  • Drew MC, He C-J, Morgan PW 2000: Programmed cell death and aerenchyma formation in roots. Trends Plant Sci., 5, 123–127. doi:10.1016/S1360-1385(00)01570-3
  • Duan YH, Zhang YL, Ye LT, Fan XR, Xu GH, Shen QR 2007: Responses of rice cultivars with different nitrogen use efficiency to partial nitrate nutrition. Ann. Bot., 99, 1153–1160. doi:10.1093/aob/mcm051
  • Echevarría-Zomeño S, Fernández-Calvino L, Castro-Sanz AB, López JA, Vázquez J, Castellano MM 2016: Dissecting the proteome dynamics of the early heat stress response leading to plant survival or death in Arabidopsis. Plant, Cell Environ., 39, 1264–1278. doi:10.1111/pce.12664
  • Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W 2008: How a century of ammonia synthesis changed the world. Nat. Geosci., 1, 636–639. doi:10.1038/ngeo325
  • Falkengren-Grerup U 1995: Interspecies differences in the preference of ammonium and nitrate in vascular plants. Oecologia, 102, 305–311. doi:10.1007/BF00329797
  • Fan S-C, Lin C-S, Hsu P-K, Lin S-H, Tsay Y-F 2009: The Arabidopsis nitrate transporter NRT1.7, expressed in phloem, is responsible for source-to-sink remobilization of nitrate. Plant Cell, 21, 2750–2761. doi:10.1105/tpc.109.067603
  • Fan X, Tang Z, Tan Y, Zhang Y, Luo B, Yang M, Lian X, Shen Q, Miller AJ, Xu G 2016: Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields. Proc. Natl. Acad. Sci. USA, 113, 7118–7123. doi:10.1073/pnas.1525184113
  • Faure J-D, Jullien M, Caboche M 1994: Zea3: a pleiotropic mutation affecting cotyledon development, cytokinin resistance and carbon-nitrogen metabolism. Plant J., 5, 481–491. doi:10.1046/j.1365-313X.1994.5040481.x
  • Fawcett RS, Slife FW 1978: Effects of field applications of nitrate on weed seed germination and dormancy. Weed Sci., 26, 594–596.
  • Fischer RA 1993: Irrigated spring wheat and timing and amount of nitrogen fertilizer. II. Physiology of grain yield response. Field Crop Res., 33, 57–80. doi:10.1016/0378-4290(93)90094-4
  • Fischer RA, Howe GN, Ibrahim Z 1993: Irrigated spring wheat and timing and amount of nitrogen-fertilizer. I. Grain yield and protein content. Field Crop Res., 33, 37–56. doi:10.1016/0378-4290(93)90093-3
  • Forde BG 2014: Nitrogen signalling pathways shaping root system architecture: an update. Curr. Opin. Plant Biol., 21, 30–36. doi:10.1016/j.pbi.2014.06.004
  • Gallardo A, Paramá R, Covelo F 2006: Differences between soil ammonium and nitrate spatial pattern in six plant communities. Simulated effect on plant populations. Plant Soil, 279, 333–346. doi:10.1007/s11104-005-8552-7
  • Gastal F, Lemaire G, Durand JL, Louarn G 2014: Quantifying crop responses to nitrogen and avenues to improve nitrogen-use efficiency. In Crop Physiology – Applications for Genetic Improvement and Agronomy, Ed. Sadras VO, Calderini D, pp. 161–206. Elsevier Academic Press, San Diego, CA.
  • Gazzarrini S, Lejay L, Gojon A, Ninnemann O, Frommer WB, von Wirén N 1999: Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots. Plant Cell, 11, 937–947. doi:10.1105/tpc.11.5.937
  • Giehl RFH, Gruber BD, von Wirén N 2014: It’s time to make changes: modulation of root system architecture by nutrient signals. J. Exp. Bot., 65, 769–778. doi:10.1093/jxb/ert421
  • Gifford ML, Banta JA, Katari MS, Hulsmans J, Chen L, Ristova D, Tranchina D, Purugganan MD, Coruzzi GM, Birnbaum KD 2013: Plasticity regulators modulate specific root traits in discrete nitrogen environments. PLoS Genet., 9, e1003760. doi:10.1371/journal.pgen.1003760
  • Gowri G, Campbell WH 1989: cDNA clones for corn leaf NADH-nitrate reductase and chloroplast NAD(P)+: glyceraldehyde-3-phosphatedehydrogenase – characterization of the clones and analysis of the expression of the genes in leaves as influenced by nitrate in the light and dark. Plant Physiol., 90, 792–798. doi:10.1104/pp.90.3.792
  • Griffiths CA, Paul MJ, Foyer CH 2016: Metabolite transport and associated sugar signalling systems underpinning source/sink interactions. Biochim. Biophys. Acta Bioenerg., 1857, 1715–1725. doi:10.1016/j.bbabio.2016.07.007
  • GRiSP 2013: Rice Almanac. International Rice Research Institute, Los Baños.
  • Gu R, Duan F, An X, Zhang F, von Wirén N, Yuan L 2013: Characterization of AMT-mediated high-affinity ammonium uptake in roots of maize (Zea mays L.). Plant Cell Physiol., 54, 1515–1524. doi:10.1093/pcp/pct099
  • Guan P, Ripoll J-J, Wang R, Vuong L, Bailey-Steinitz LJ, Ye D, Crawford NM 2017: Interacting TCP and NLP transcription factors control plant responses to nitrate availability. Proc. Natl. Acad. Sci. USA, 114, 2419–2424. doi:10.1073/pnas.1615676114
  • Gungula DT, Kling JG, Togun AO 2003: CERES-Maize predictions of maize phenology under nitrogen-stressed conditions in Nigeria. Agron. J., 95, 892–899. doi:10.2134/agronj2003.0892
  • Hachiya T, Sakakibara H 2016: Interactions between nitrate and ammonium in their uptake, allocation, assimilation, and signaling in plants. J. Exp. Bot. doi:10.1093/jxb/erw449
  • Hageman RH, Flesher D 1960: Nitrate reductase activity in corn seedlings as affected by light and nitrate content of nutrient media. Plant Physiol., 35, 700–708. doi:10.1104/pp.35.5.700
  • Hall AJ, Savin R, Slafer GA 2014: Is time to flowering in wheat and barley influenced by nitrogen?: a critical appraisal of recent published reports. Eur. J. Agron., 54, 40–46. doi:10.1016/j.eja.2013.11.006
  • He C-J, Morgan PW, Drew MC 1992: Enhanced sensitivity to ethylene in nitrogen- or phosphate-starved roots of Zea mays L. during aerenchyma formation. Plant Physiol., 98, 137–142. doi:10.1104/pp.98.1.137
  • Hewitt EJ, Afridi MMRK 1959: Adaptive synthesis of nitrate reductase in higher plants. Nature, 183, 57–58. doi:10.1038/183057a0
  • Hinsinger P, Gobran GR, Gregory PJ, Wenzel WW 2005: Rhizosphere geometry and heterogeneity arising from root mediated physical and chemical processes. New Phytol., 168, 293–303. doi:10.1111/j.1469-8137.2005.01512.x
  • Ho C-H, Lin S-H, Hu H-C, Tsay Y-F 2009: CHL1 functions as a nitrate sensor in plants. Cell, 138, 1184–1194. doi:10.1016/j.cell.2009.07.004
  • Hodge A 2004: The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol., 162, 9–24. doi:10.1111/nph.2004.162.issue-1
  • Hu B, Wang W, Ou S et al. 2015: Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat. Genet., 47, 834–838. doi:10.1038/ng.3337
  • Kant S, Peng M, Rothstein SJ 2011: Genetic regulation by NLA and microRNA827 for maintaining nitrate-dependent phosphate homeostasis in Arabidopsis. PLoS Genet., 7, e1002021. doi:10.1371/journal.pgen.1002021
  • Kiba T, Krapp A 2016: Plant nitrogen acquisition under low availability: regulation of uptake and root architecture. Plant Cell Physiol., 57, 707–714. doi:10.1093/pcp/pcw052
  • Kirk GJD 2001: Plant-mediated processes to acquire nutrients: nitrogen uptake by rice plants. Plant Soil, 232, 129–134. doi:10.1023/A:1010341116376
  • Kirk GJD, Kronzucker HJ 2005: The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants: a modelling study. Ann. Bot., 96, 639–646. doi:10.1093/aob/mci216
  • Konishi M, Yanagisawa S 2013a: Arabidopsis NIN-like transcription factors have a central role in nitrate signalling. Nat. Commun., 4, 1617. doi:10.1038/ncomms2621
  • Konishi M, Yanagisawa S 2013b: An NLP-binding site in the 3ʹ flanking region of the nitrate reductase gene confers nitrate-inducible expression in Arabidopsis thaliana (L.) Heynh. Soil Sci. Plant Nutr., 59, 612–620. doi:10.1080/00380768.2013.809602
  • Konishi M, Yanagisawa S 2014: Emergence of a new step towards understanding the molecular mechanisms underlying nitrate-regulated gene expression. J. Exp. Bot., 65, 5589–5600. doi:10.1093/jxb/eru267
  • Konishi N, Ishiyama K, Matsuoka K, Maru I, Hayakawa T, Yamaya T, Kojima S 2014: NADH-dependent glutamate synthase plays a crucial role in assimilating ammonium in the Arabidopsis root. Physiol. Plantarum, 152, 138–151. doi:10.1111/ppl.12177
  • Krapp A 2015: Plant nitrogen assimilation and its regulation: a complex puzzle with missing pieces. Curr. Opin. Plant Biol., 25, 115–122. doi:10.1016/j.pbi.2015.05.010
  • Krouk G 2016: Hormones and nitrate: a two-way connection. Plant Mol. Biol., 91, 599–606. doi:10.1007/s11103-016-0463-x
  • Krouk G, Lacombe B, Bielach A et al. 2010: Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev. Cell, 18, 927–937. doi:10.1016/j.devcel.2010.05.008
  • Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, Hirai N, Koshiba T, Kamiya Y, Nambara E 2004: The Arabidopsis cytochrome P450 CYP707A encodes ABA 8ʹ-hydroxylases: key enzymes in ABA catabolism. EMBO J., 23, 1647–1656. doi:10.1038/sj.emboj.7600121
  • Lahners K, Kramer V, Back E, Privalle L, Rothstein S 1988: Molecular cloning of complementary DNA encoding maize nitrite reductase: molecular analysis and nitrate induction. Plant Physiol., 88, 741–746. doi:10.1104/pp.88.3.741
  • Lee RB, Rudge KA 1986: Effects of nitrogen deficiency on the absorption of nitrate and ammonium by barley plants. Ann. Bot., 57, 471–486. doi:10.1093/oxfordjournals.aob.a087129
  • Li B, Xin W, Sun S, Shen Q, Xu G 2006: Physiological and molecular responses of nitrogen-starved rice plants to re-supply of different nitrogen sources. Plant Soil, 287, 145–159. doi:10.1007/s11104-006-9051-1
  • Li Y, Kronzucker HJ, Shi W 2016: Microprofiling of nitrogen patches in paddy soil: analysis of spatiotemporal nutrient heterogeneity at the microscale. Sci. Rep., 6, 27064. doi:10.1038/srep27064
  • Li YL, Fan XR, Shen QR 2008: The relationship between rhizosphere nitrification and nitrogen-use efficiency in rice plants. Plant, Cell Environ., 31, 73–85.
  • Lima JE, Kojima S, Takahashi H, von Wirén N 2010: Ammonium triggers lateral root branching in Arabidopsis in an AMMONIUM TRANSPORTER1;3-dependent manner. Plant Cell, 22, 3621–3633. doi:10.1105/tpc.110.076216
  • Liu H, Yang H, Wu C, Feng J, Liu X, Qin H, Wang D 2009: Overexpressing HRS1 confers hypersensitivity to low phosphate-elicited inhibition of primary root growth in Arabidopsis thaliana. J. Integr. Plant Biol., 51, 382–392. doi:10.1111/j.1744-7909.2009.00819.x
  • Liu K-H, Niu Y, Konishi M et al. 2017a: Discovery of nitrate-CPK-NLP signalling in central nutrient-growth networks. Nature, 545, 311–316. doi:10.1038/nature22077
  • Liu W, Sun Q, Wang K, Du Q, Li W-X 2017b: Nitrogen Limitation Adaptation (NLA) is involved in source-to-sink remobilization of nitrate by mediating the degradation of NRT1.7 in Arabidopsis. New Phytol., 214, 734–744. doi:10.1111/nph.14396
  • Liu X, Feng H, Huang D, Song M, Fan X 2015: Two short sequences in OsNAR2.1 promoter are necessary for fully activating the nitrate induced gene expression in rice roots. Sci. Rep., 5, 11950. doi:10.1038/srep11950
  • Liu X, Huang D, Tao J, Miller AJ, Fan X, Xu G 2014: Identification and functional assay of the interaction motifs in the partner protein OsNAR2.1 of the two-component system for high-affinity nitrate transport. New Phytol., 204, 74–80. doi:10.1111/nph.12986
  • Maeda S, Konishi M, Yanagisawa S, Omata T 2014: Nitrite transport activity of a novel HPP family protein conserved in cyanobacteria and chloroplasts. Plant Cell Physiol., 55, 1311–1324. doi:10.1093/pcp/pcu075
  • Makino A 2011: Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. Plant Physiol., 155, 125–129. doi:10.1104/pp.110.165076
  • Makino A, Osmond B 1991: Effects of nitrogen nutrition on nitrogen partitioning between chloroplasts and mitochondria in pea and wheat. Plant Physiol., 96, 355–362. doi:10.1104/pp.96.2.355
  • Marchive C, Roudier F, Castaings L, Bréhaut V, Blondet E, Colot V, Meyer C, Krapp A 2013: Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants. Nat. Commun., 4, 1713. doi:10.1038/ncomms2650
  • Marín IC, Loef I, Bartetzko L, Searle I, Coupland G, Stitt M, Osuna D 2011: Nitrate regulates floral induction in Arabidopsis, acting independently of light, gibberellin and autonomous pathways. Planta, 233, 539–552. doi:10.1007/s00425-010-1316-5
  • Martin T, Oswald O, Graham IA 2002: Arabidopsis seedling growth, storage lipid mobilization, and photosynthetic gene expression are regulated by carbon: nitrogen availability. Plant Physiol., 128, 472–481. doi:10.1104/pp.010475
  • Matakiadis T, Alboresi A, Jikumaru Y, Tatematsu K, Pichon O, Renou J-P, Kamiya Y, Nambara E, Truong H-N 2009: The Arabidopsis abscisic acid catabolic gene CYP707A2 plays a key role in nitrate control of seed dormancy. Plant Physiol., 149, 949–960. doi:10.1104/pp.108.126938
  • Medici A, Krouk G 2014: The primary nitrate response: a multifaceted signalling pathway. J. Exp. Bot., 65, 5567–5576. doi:10.1093/jxb/eru245
  • Medici A, Marshall-Colon A, Ronzier E, Szponarski W, Wang R, Gojon A, Crawford NM, Ruffel S, Coruzzi GM, Krouk G 2015: AtNIGT1/HRS1 integrates nitrate and phosphate signals at the Arabidopsis root tip. Nat. Commun., 6, 6274. doi:10.1038/ncomms7274
  • Melo-Oliveira R, Oliveira IC, Coruzzi GM 1996: Arabidopsis mutant analysis and gene regulation define a nonredundant role for glutamate dehydrogenase in nitrogen assimilation. Proc. Natl. Acad. Sci. USA, 93, 4718–4723. doi:10.1073/pnas.93.10.4718
  • Menz J, Li Z, Schulze WX, Ludewig U 2016: Early nitrogen-deprivation responses in Arabidopsis roots reveal distinct differences on transcriptome and (phospho-) proteome levels between nitrate and ammonium nutrition. Plant J., 88, 717–734. doi:10.1111/tpj.2016.88.issue-5
  • Miller AJ, Cramer MD 2005: Root nitrogen acquisition and assimilation. Plant Soil, 274, 1–36. doi:10.1007/s11104-004-0965-1
  • Miller AJ, Fan X, Orsel M, Smith SJ, Wells DM 2007: Nitrate transport and signalling. J. Exp. Bot., 58, 2297–2306. doi:10.1093/jxb/erm066
  • Miura K, Lee J, Gong Q, Ma S, Jin JB, Yoo CY, Miura T, Sato A, Bohnert HJ, Hasegawa PM 2011: SIZ1 regulation of phosphate starvation-induced root architecture remodeling involves the control of auxin accumulation. Plant Physiol., 155, 1000–1012. doi:10.1104/pp.110.165191
  • Miura K, Okamoto H, Okuma E, Shiba H, Kamada H, Hasegawa PM, Murata Y 2013: SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis. Plant J., 73, 91–104. doi:10.1111/tpj.12014
  • Miura K, Rus A, Sharkhuu A et al. 2005: The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proc. Natl. Acad. Sci. USA, 102, 7760–7765. doi:10.1073/pnas.0500778102
  • Mounier E, Pervent M, Ljung K, Gojon A, Nacry P 2014: Auxin-mediated nitrate signalling by NRT1.1 participates in the adaptive response of Arabidopsis root architecture to the spatial heterogeneity of nitrate availability. Plant, Cell Environ., 37, 162–174. doi:10.1111/pce.2014.37.issue-1
  • Nacry P, Bouguyon E, Gojon A 2013: Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant Soil, 370, 1–29. doi:10.1007/s11104-013-1645-9
  • Nerson H, Edelstein M, Pinthus MJ 1990: Effects of N and P nutrition on spike development in spring wheat. Plant Soil, 124, 33–37. doi:10.1007/BF00010928
  • Okamoto M, Kuwahara A, Seo M, Kushiro T, Asami T, Hirai N, Kamiya Y, Koshiba T, Nambara E 2006: CYP707A1 and CYP707A2, which encode abscisic acid 8ʹ-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis. Plant Physiol., 141, 97–107. doi:10.1104/pp.106.079475
  • Owen AG, Jones DL 2001: Competition for amino acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant N acquisition. Soil Biol. Biochem., 33, 651–657. doi:10.1016/S0038-0717(00)00209-1
  • Park BS, Seo JS, Chua N-H 2014: NITROGEN LIMITATION ADAPTATION recruits PHOSPHATE2 to target the phosphate transporter PT2 for degradation during the regulation of Arabidopsis phosphate homeostasis. Plant Cell, 26, 454–464. doi:10.1105/tpc.113.120311
  • Park BS, Song JT, Seo HS 2011: Arabidopsis nitrate reductase activity is stimulated by the E3 SUMO ligase AtSIZ1. Nat. Commun., 2, 400. doi:10.1038/ncomms1408
  • Patterson K, Cakmak T, Cooper A, Lager I, Rasmusson AG, Escobar MA 2010: Distinct signalling pathways and transcriptome response signatures differentiate ammonium- and nitrate-supplied plants. Plant, Cell Environ., 33, 1486–1501.
  • Peng M, Hannam C, Gu H, Bi Y-M, Rothstein SJ 2007: A mutation in NLA, which encodes a RING-type ubiquitin ligase, disrupts the adaptability of Arabidopsis to nitrogen limitation. Plant J., 50, 320–337. doi:10.1111/j.1365-313X.2007.03050.x
  • Postma JA, Lynch JP 2011: Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen, phosphorus, and potassium. Plant Physiol., 156, 1190–1201. doi:10.1104/pp.111.175489
  • Pouteau S, Cherel I, Vaucheret H, Caboche M 1989: Nitrate reductase mRNA regulation in Nicotiana plumbaginifolia nitrate reductase-deficient mutants. Plant Cell, 1, 1111–1120. doi:10.1105/tpc.1.11.1111
  • Qin C, Qian W, Wang W, Wu Y, Yu C, Jiang X, Wang D, Wu P 2008: GDP-mannose pyrophorphorylase is a genetic determinant of ammonium sensitivity in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA, 105, 18308–18313. doi:10.1073/pnas.0806168105
  • Remans T, Nacry P, Pervent M, Filleur S, Diatloff E, Mounier E, Tillard P, Forde BG, Gojon A 2006: The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Proc. Natl. Acad. Sci. USA, 103, 19206–19211. doi:10.1073/pnas.0605275103
  • Riveras E, Alvarez JM, Vidal EA, Oses C, Vega A, Gutiérrez RA 2015: The calcium ion is a second messenger in the nitrate signaling pathway of Arabidopsis. Plant Physiol., 169, 1397–1404. doi:10.1104/pp.15.00961
  • Robinson D, Hodge A, Griffiths BS, Fitter AH 1999: Plant root proliferation in nitrogen-rich patches confers competitive advantage. Proc. Roy. Soc. Lond. B: Biol. Sci., 266, 431–435. doi:10.1098/rspb.1999.0656
  • Rosas U, Cibrian-Jaramillo A, Banta JA et al. 2013: Integration of responses within and across Arabidopsis natural accessions uncovers loci controlling root systems architecture. Proc. Natl. Acad. Sci. USA, 110, 15133–15138. doi:10.1073/pnas.1305883110
  • Rubinigg M, Stulen I, Theo J, Elzenga M, Colmer TD 2002: Spatial patterns of radial oxygen loss and nitrate net flux along adventitious roots of rice raised in aerated or stagnant solution. Funct. Plant Biol., 29, 1475–1481. doi:10.1071/FP02081
  • Sakakibara H, Kobayashi K, Deji A, Sugiyama T 1997: Partial characterization of the signaling pathway for the nitrate-dependent expression of genes for nitrogen-assimilatory enzymes using detached maize leaves. Plant Cell Physiol., 38, 837–843. doi:10.1093/oxfordjournals.pcp.a029242
  • Sasakawa H, Yamamoto Y 1978: Comparison of the uptake of nitrate and ammonium by rice seedlings. Plant Physiol., 62, 665–669. doi:10.1104/pp.62.4.665
  • Sawaki N, Tsujimoto R, Shigyo M, Konishi M, Toki S, Fujiwara T, Yanagisawa S 2013: A nitrate-inducible GARP family gene encodes an auto-repressible transcriptional repressor in rice. Plant Cell Physiol., 54, 506–517. doi:10.1093/pcp/pct007
  • Schauser L, Roussis A, Stiller J, Stougaard J 1999: A plant regulator controlling development of symbiotic root nodules. Nature, 402, 191–195. doi:10.1038/46058
  • Schauser L, Wieloch W, Stougaard J 2005: Evolution of NIN-like proteins in Arabidopsis, rice, and Lotus japonicus. J. Mol. Evol., 60, 229–237. doi:10.1007/s00239-004-0144-2
  • Scheible WR, Gonzalez-Fontes A, Lauerer M, Müller-Rober B, Caboche M, Stitt M 1997a: Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell, 9, 783–798. doi:10.1105/tpc.9.5.783
  • Scheible W-R, González-Fontes A, Morcuende R, Lauerer M, Geiger M, Glaab J, Gojon A, Schulze E-D, Stitt M 1997b: Tobacco mutants with a decreased number of functional nia genes compensate by modifying the diurnal regulation of transcription, post-translational modification and turnover of nitrate reductase. Planta, 203, 304–319. doi:10.1007/s004250050196
  • Scheible WR, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M 2004: Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol., 136, 2483–2499. doi:10.1104/pp.104.047019
  • Siyiannis VF, Protonotarios VE, Zechmann B, Chorianopoulou SN, Müller M, Hawkesford MJ, Bouranis DL 2012: Comparative spatiotemporal analysis of root aerenchyma formation processes in maize due to sulphate, nitrate or phosphate deprivation. Protoplasma, 249, 671–686. doi:10.1007/s00709-011-0309-y
  • Smith FW, Jackson WA 1987a: Nitrogen enhancement of phosphate transport in roots of Zea mays L. I. Effects of ammonium and nitrate pretreatment. Plant Physiol., 84, 1314–1318. doi:10.1104/pp.84.4.1314
  • Smith FW, Jackson WA 1987b: Nitrogen enhancement of phosphate transport in roots of Zea mays L. II. Kinetic and inhibitor studies. Plaant Physiol., 84, 1319–1324. doi:10.1104/pp.84.4.1319
  • Sonoda Y, Ikeda A, Saiki S, Yamaya T, Yamaguchi J 2003: Feedback regulation of the ammonium transporter gene family AMT1 by glutamine in rice. Plant Cell Physiol., 44, 1396–1402. doi:10.1093/pcp/pcg169
  • Soyano T, Kouchi H, Hirota A, Hayashi M 2013: Nodule inception directly targets NF-Y subunit genes to regulate essential processes of root nodule development in Lotus japonicus. PLoS Genet., 9, e1003352. doi:10.1371/journal.pgen.1003352
  • Steinbauer GP, Grigsby B 1957: Interaction of temperature, light, and moistening agent in the germination of weed seeds. Weeds, 5, 175–182. doi:10.2307/4040187
  • Sumimoto H, Kamakura S, Ito T 2007: Structure and function of the PB1 domain, a protein interaction module conserved in animals, fungi, amoebas, and plants. Sci. STKE, 2007, re6. doi:10.1126/stke.4012007re6
  • Sun H, Tao J, Liu S, Huang S, Chen S, Xie X, Yoneyama K, Zhang Y, Xu G 2014: Strigolactones are involved in phosphate- and nitrate-deficiency-induced root development and auxin transport in rice. J. Exp. Bot., 65, 6735–6746. doi:10.1093/jxb/eru029
  • Suzuki W, Konishi M, Yanagisawa S 2013: The evolutionary events necessary for the emergence of symbiotic nitrogen fixation in legumes may involve a loss of nitrate responsiveness of the NIN transcription factor. Plant Signal. Behav., 8, e25975. doi:10.4161/psb.25975
  • Takei K, Takahashi T, Sugiyama T, Yamaya T, Sakakibara H 2002: Multiple routes communicating nitrogen availability from roots to shoots: a signal transduction pathway mediated by cytokinin. J. Exp. Bot., 53, 971–977. doi:10.1093/jexbot/53.370.971
  • Takei K, Ueda N, Aoki K, Kuromori T, Hirayama T, Shinozaki K, Yamaya T, Sakakibara H 2004: AtIPT3 is a key determinant of nitrate-dependent cytokinin biosynthesis in Arabidopsis. Plant Cell Physiol., 45, 1053–1062. doi:10.1093/pcp/pch119
  • Tang P-S, Wu H-Y 1957: Adaptive formation of nitrate reductase in rice seedlings. Nature, 179, 1355–1356. doi:10.1038/1791355a0
  • Taylor AR, Bloom AJ 1998: Ammonium, nitrate, and proton fluxes along the maize root. Plant, Cell Environ., 21, 1255–1263. doi:10.1046/j.1365-3040.1998.00357.x
  • Tian Q, Chen F, Liu J, Zhang F, Mi G 2008: Inhibition of maize root growth by high nitrate supply is correlated with reduced IAA levels in roots. J. Plant Physiol., 165, 942–951. doi:10.1016/j.jplph.2007.02.011
  • Tsay Y-F, Ho C-H, Chen H-Y, Lin S-H 2011: Integration of nitrogen and potassium signaling. Annu. Rev. Plant Biol., 62, 207–226. doi:10.1146/annurev-arplant-042110-103837
  • Vidal EA, Álvarez JM, Gutiérrez RA 2014a: Nitrate regulation of AFB3 and NAC4 gene expression in Arabidopsis roots depends on NRT1.1 nitrate transport function. Plant Signal. Behav., 9, e28501. doi:10.4161/psb.28501
  • Vidal EA, Araus V, Lu C, Parry G, Green PJ, Coruzzi GM, Gutiérrez RA 2010: Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA, 107, 4477–4482. doi:10.1073/pnas.0909571107
  • Vidal EA, Moyano TC, Canales J, Gutiérrez RA 2014b: Nitrogen control of developmental phase transitions in Arabidopsis thaliana. J. Exp. Bot., 65, 5611–5618. doi:10.1093/jxb/eru326
  • Walch-Liu P, Forde BG 2008: Nitrate signalling mediated by the NRT1.1 nitrate transporter antagonises L-glutamate-induced changes in root architecture. Plant J., 54, 820–828. doi:10.1111/j.1365-313X.2008.03443.x
  • Walch-Liu P, Neumann G, Bangerth F, Engels C 2000: Rapid effects of nitrogen form on leaf morphogenesis in tobacco. J. Exp. Bot., 51, 227–237. doi:10.1093/jexbot/51.343.227
  • Wang H, Sun R, Cao Y et al. 2015: OsSIZ1, a SUMO E3 ligase gene, is involved in the regulation of the responses to phosphate and nitrogen in rice. Plant Cell Physiol., 56, 2381–2395. doi:10.1093/pcp/pcv162
  • Wang R, Guegler K, LaBrie ST, Crawford NM 2000: Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. Plant Cell, 12, 1491–1509. doi:10.1105/tpc.12.8.1491
  • Wang R, Okamoto M, Xing X, Crawford NM 2003: Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiol., 132, 556–567. doi:10.1104/pp.103.021253
  • Wang R, Tischner R, Gutiérrez RA, Hoffman M, Xing X, Chen M, Coruzzi G, Crawford NM 2004: Genomic analysis of the nitrate response using a nitrate reductase-null mutant of Arabidopsis. Plant Physiol., 136, 2512–2522. doi:10.1104/pp.104.044610
  • Wang Y-Y, Hsu P-K, Tsay Y-F 2012: Uptake, allocation and signaling of nitrate. Trends Plant Sci., 17, 458–467. doi:10.1016/j.tplants.2012.04.006
  • Watanabe K, Nishiuchi S, Kulichikhin K, Nakazono M 2013: Does suberin accumulation in plant roots contribute to waterlogging tolerance? Front. Plant Sci., 4, 178. doi:10.3389/fpls.2013.00178
  • Williams RL, Angus JF 1994: Deep floodwater protects high-nitrogen rice crops from low-temperature damage. Aust. J. Exp. Agr., 34, 927–932. doi:10.1071/EA9940927
  • Xiao J, Li C, Xu S, Xing L, Xu Y, Chong K 2015: JACALIN-LECTIN LIKE1 regulates the nuclear accumulation of GLYCINE-RICH RNA-BINDING PROTEIN7, influencing the RNA processing of FLOWERING LOCUS C antisense transcripts and flowering time in Arabidopsis. Plant Physiol., 169, 2102–2117.
  • Xie W, Wang G, Yuan M et al. 2015: Breeding signatures of rice improvement revealed by a genomic variation map from a large germplasm collection. Proc. Natl. Acad. Sci. USA, 112, E5411–E5419. doi:10.1073/pnas.1515919112
  • Xu G, Fan X, Miller AJ 2012: Plant nitrogen assimilation and use efficiency. Annu. Rev. Plant Biol., 63, 153–182. doi:10.1146/annurev-arplant-042811-105532
  • Yan D, Easwaran V, Chau V et al. 2016: NIN-like protein 8 is a master regulator of nitrate-promoted seed germination in Arabidopsis. Nat. Commun., 7, 13179. doi:10.1038/ncomms13179
  • Yan M, Fan X, Feng H, Miller AJ, Shen Q, Xu G 2011: Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges. Plant, Cell Environ., 34, 1360–1372. doi:10.1111/j.1365-3040.2011.02335.x
  • Yan Y, Wang H, Hamera S, Chen X, Fang R 2014: MiR444a has multiple functions in the rice nitrate-signaling pathway. Plant J., 78, 44–55. doi:10.1111/tpj.2014.78.issue-1
  • Yanagisawa S 2014: Transcription factors involved in controlling the expression of nitrate reductase genes in higher plants. Plant Sci., 229, 167–171. doi:10.1016/j.plantsci.2014.09.006
  • Yoneyama K, Xie X, Kim HI, Kisugi T, Nomura T, Sekimoto H, Yokota T, Yoneyama K 2012: How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta, 235, 1197–1207. doi:10.1007/s00425-011-1568-8
  • Yuan S, Zhang Z-W, Zheng C et al. 2016: Arabidopsis cryptochrome 1 functions in nitrogen regulation of flowering. Proc. Natl. Acad. Sci. USA, 113, 7661–7666. doi:10.1073/pnas.1602004113
  • Zhang H, Forde BG 1998: An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science, 279, 407–409. doi:10.1126/science.279.5349.407
  • Zhang H, Rong H, Pilbeam D 2007: Signalling mechanisms underlying the morphological responses of the root system to nitrogen in Arabidopsis thaliana. J. Exp. Bot., 58, 2329–2338. doi:10.1093/jxb/erm114
  • Zhang J, Xu L, Wang F, Deng M, Yi K 2012: Modulating the root elongation by phosphate/nitrogen starvation in an OsGLU3 dependant way in rice. Plant Signal. Behav., 7, 1144–1145. doi:10.4161/psb.21334
  • Zhuo D, Okamoto M, Vidmar JJ, Glass ADM 1999: Regulation of a putative high-affinity nitrate transporter (Nrt2;1At) in roots of Arabidopsis thaliana. Plant J., 17, 563–568. doi:10.1046/j.1365-313X.1999.00396.x
  • Zou J-J, Wei F-J, Wang C, Wu J-J, Ratnasekera D, Liu W-X, Wu W-H 2010: Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid- and Ca2+-mediated stomatal regulation in response to drought stress. Plant Physiol., 154, 1232–1243. doi:10.1104/pp.110.157545

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.