1,811
Views
22
CrossRef citations to date
0
Altmetric
Environment

Forage rice varieties Fukuhibiki and Tachisuzuka emit larger CH4 than edible rice Haenuki

, , , , , , , & show all
Pages 77-83 | Received 14 Mar 2017, Accepted 08 Sep 2017, Published online: 15 Sep 2017

References

  • Aulakh MS, Wassmann R, Rennenberg H 2002: Methane transport capacity of twenty-two rice cultivars from five major Asian rice-growing countries. Agr. Ecosyst. Environ., 91, 59–71. doi:10.1016/S0167-8809(01)00260-2
  • Cheng W, Padre AT, Sato C, Shiono H, Hattori S, Kajihara A, Aoyama M, Tawaraya K, Kumagai K 2016: Changes in the soil C and N contents, C decomposition and N mineralization potentials in a rice paddy after long-term application of inorganic fertilizers and organic matters. Soil Sci. Plant Nutr., 62, 212–219. doi:10.1080/00380768.2016.1155169
  • Cheng W, Sakai H, Hartley AE, Yagi K, Hasegawa T 2008: Increased night temperature reduces the stimulatory effect of elevated carbon dioxide concentration on methane emission from rice paddy soil. Glob. Change Biol., 14, 644–656. doi:10.1111/j.1365-2486.2007.01532.x
  • Cheng W, Sakai H, Yagi K, Hasegawa T 2009: Interactions of elevated [CO2] and night temperature on rice growth and yield. Agr. For. Meteorol., 149, 51–58. doi:10.1016/j.agrformet.2008.07.006
  • Cheng W, Yagi K, Sakai H, Kobayashi K 2006: Effects of elevated atmospheric CO2 concentrations on CH4 and N2O emission from rice soil: An experiment in controlled-environment chambers. Biogeochemistry, 77, 351–373. doi:10.1007/s10533-005-1534-2
  • Chidthaisong A, Watanabe I 1997: Methane formation and emission from flooded rice soil incorporated with 13C-labeled rice straw. Soil Biol. Biochem., 29, 1173–1181. doi:10.1016/S0038-0717(97)00034-5
  • Fukushima A 2012: Yield potential of high-yield rice varieties in the Tohoku region of Japan. JARQ, 46, 199–204. doi:10.6090/jarq.46.199
  • Gutierreza J, Kim SY, Kim PJ 2013: Effect of rice cultivar on CH4 emissions and productivity in Korean paddy soil. Field Crops Res., 146, 16–24. doi:10.1016/j.fcr.2013.03.003
  • Harada H, Kobayashi H, Shindo H 2007: Reduction in greenhouse gas emissions by no-tilling rice cultivation in Hachirogata polder, northern Japan: Life-cycle inventory analysis. Soil Sci. Plant Nutr., 53, 668–677. doi:10.1111/j.1747-0765.2007.00174.x
  • Hayano M, Fumoto T, Yagi K, Shirato Y 2013: National-scale estimation of methane emission from paddy fields in Japan: Database construction and upscaling using a process-based biogeochemistry model. Soil Sci. Plant Nutr., 59, 812–823. doi:10.1080/00380768.2013.836943
  • Huang Y, Sass RL, Fisher FM 1997: Methane emission from Texas rice paddy soils, 1, quantitative multi-year dependence of CH4 emission on soil, cultivar and grain yield. Glob. Change Biol., 3, 479–489. doi:10.1046/j.1365-2486.1997.00083.x
  • Inubushi K, Cheng W, Aonuma S, Hoque MM, Kobayashi K, Miura S, Kim HY, Okada M 2003: Effects of free-air CO2 enrichment (FACE) on CH4 emission from a rice paddy field. Glob. Change Biol., 9, 1458–1464. doi:10.1046/j.1365-2486.2003.00665.x
  • Itoh M, Sudo S, Mori S et al. 2011: Mitigation of methane emissions from paddy fields by prolonging midseason drainage. Agr. Ecosyst. Environ., 141, 359–372. doi:10.1016/j.agee.2011.03.019
  • Jia Z, Cai Z, Tsuruta H 2006: Effect of rice cultivar on CH4 production potential of rice soil and CH4 emission in a pot experiment. Soil Sci. Plant Nutr., 52, 341–348. doi:10.1111/j.1747-0765.2006.00043.x
  • Kato H 2008: Development of rice varieties for whole crop silage (WCS) in Japan. JARQ, 42, 231–236. doi:10.6090/jarq.42.231
  • Lou Y, Inubushi K, Mizuno T, Hasegawa T, Lin Y, Sakai H, Cheng W, Kobayashi K 2008: CH4 emission with differences in atmospheric CO2 enrichment and rice cultivars in a Japanese paddy soil. Glob. Change Biol., 14, 2678–2687.
  • Ma J, Ji Y, Zhang G, Xu H, Yagi K 2013: Timing of midseason aeration to reduce CH4 and N2O emissions from double rice cultivation in China. Soil Sci. Plant Nutr., 59, 35–45. doi:10.1080/00380768.2012.730477
  • MAFF 2017: About Promoting Forage Rice (Shiryoyoumei no Suishin ni Tsuite). Ministry of Agriculture, Forestry and Fisheries (MAFF) (in Japanese). http://www.maff.go.jp/j/seisan/kokumotu/pdf/siryomai_meguji_2902.pdf (February, 2017).
  • Matsushita K, Iida S, Ideta O, Sunohara Y, Maeda H, Tamura Y, Kouno S, Takakuwa M 2011: ‘Tachisuzuka’, a new rice cultivar with high straw yield and high sugar content for whole-crop silage use. Breed. Sci., 61, 86–92. doi:10.1270/jsbbs.61.86
  • Minamikawa K, Tokida T, Sudo S, Padre A, Yagi K 2015: Guidelines for Measuring CH4 and N2O Emissions from Rice Paddies by a Manually Operated Closed Chamber Method. National Institute for Agro-Environmental Sciences, Tsukuba.
  • Morita M, Ishikawa M, Yoshida N, Horiguchi K, Takahashi T 2012: Influence of ammonium sulfate fertilizer recovered through ammonia-collecting equipment on growth on yield of forage rice. Jpn. J. Grassl. Sci., 58, 166−172 (in Japanese with English summary).
  • Nakajima M, Cheng W, Hanayama S, Okada M 2017: Shallow autumn tillage does not reduce CH4 emission from an Andisol paddy field in Morioka, a cold region in Japan. J. Agri. Meteorol., 73, 92–99. doi:10.2480/agrmet.D-16-00009
  • Nakajima M, Cheng W, Tang S, Hori Y, Yaginuma E, Hattori S, Hanayama S, Tawaraya K, Xu X 2016: Modeling aerobic decomposition of rice straw during the off-rice season in an Andisol paddy soil in a cold temperate region of Japan: Effects of soil temperature and moisture. Soil Sci. Plant Nutr., 62, 90–98. doi:10.1080/00380768.2015.1121116
  • NIES (National Institute for Environmental Studies, Japan) 2016: National Greenhouse Gas Inventory Report of JAPAN (in Japanese). http://www-gio.nies.go.jp/aboutghg/nir/2016/NIR-JPN-2016-v3.0_rev_web.pdf (April, 2016).
  • Nouchi I, Mariko S, Aoki K 1990: Mechanism of methane transport from the rhizosphere to the atmosphere through rice plants. Plant Physiol., 94, 59−66. doi:10.1104/pp.94.1.59
  • Ozawa W, Yoshida N 2009: Forage Rice Cultivation and Usage (Shiryoyoumei No Saibai to Riyou). Soshisha Press, Tokyo (in Japanese).
  • Riya S, Zhou S, Watanabe Y, Sagehashi M, Terada A, Hosomi M 2012: CH4 and N2O emissions from different varieties of forage rice (Oryza sativa L.) treating liquid cattle waste. Sci. Total Environ., 419, 178–186. doi:10.1016/j.scitotenv.2012.01.014
  • Sakai H, Yagi K, Kobayashi K, Kawashima S 2001: Rice carbon balance under elevated CO2. New Phytolog., 150, 241–249. doi:10.1046/j.1469-8137.2001.00105.x
  • Smil V, Kobayashi K 2012: Japan’s Dietary Transition and its Impacts. The MIT Press, Massachusetts Institute of Technology, Cambridge, MA.
  • Sudo S 2006: Method and instrument for measuring atmospheric gas. Industrial Property Digital Library, Patent of Japan (no. 2006–275844).
  • Tokida T, Adachi M, Cheng W, Nakajima Y, Fumoto T, Matsushima M, Nakamura H, Okada M, Sameshima R, Hasegawa T 2011: Methane and soil CO2 production from current-season photosynthates in a rice paddy exposed to elevated CO2 concentration and soil temperature. Glob. Change Biol., 17, 3327–3337. doi:10.1111/j.1365-2486.2011.02475.x
  • Wassmann R, Aulakh MS 2000: The role of rice plants in regulating mechanisms of methane missions. Biol. Fertil. Soils, 31, 20–29. doi:10.1007/s003740050619
  • Watanabe A, Kimura M 1998: Factors affecting variation in CH4 emission from paddy soils grown with different rice cultivars: A pot experiment. J. Geophys. Res., 103, 18947–18952. doi:10.1029/98JD01679
  • Watanabe A, Takeda T, Kimura M 1999: Evaluation of origins of CH4 carbon emitted from rice paddies. J. Geophys. Res., 104, 23623–23629. doi:10.1029/1999JD900467
  • Win AT, Toyota K, Ito D, Chikamatsu S, Motobayashi T, Takahashi N, Ookawa T, Hirasawa T 2016: Effect of two whole-crop rice (Oryza sativa L.) cultivars on methane emission and Cu and Zn uptake in a paddy field fertilized with biogas slurry. Soil Sci. Plant Nutr., 62, 99–105.
  • Win AT, Toyota K, Win KT, Motobayashi T, Ookawa T, Hirasawa T, Chen D, Lu J 2014: Effect of biogas slurry application on CH4 and N2O emissions, Cu and Zn uptakes by whole crop rice in a paddy field in Japan. Soil Sci. Plant Nutr., 60, 411–422. doi:10.1080/00380768.2014.899886
  • Yagi K, Minami K 1990: Effect of organic matter application on methane emission from some Japanese paddy fields. Soil Sci. Plant Nutr., 36, 599–610. doi:10.1080/00380768.1990.10416797
  • Yao H, Yagi K, Nouchi I 2000: Importance of physical plant properties on methane transport through several rice cultivars. Plant Soil, 222, 83–93. doi:10.1023/A:1004773810520
  • Zhang Y, Jiang Y, Li Z, Zhu X, Wang X, Chen J, Hang X, Deng A, Zhang J, Zhang W 2015: Aboveground morphological traits do not predict rice variety effects on CH4 emissions. Agr. Ecosyst. Environ., 208, 86–93. doi:10.1016/j.agee.2015.04.030

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.