1,724
Views
9
CrossRef citations to date
0
Altmetric
Plant nutrition

Impacts of autophagy on nitrogen use efficiency in plants

ORCID Icon & ORCID Icon
Pages 100-105 | Received 04 Jul 2017, Accepted 29 Nov 2017, Published online: 07 Dec 2017

References

  • Avila-Ospina L, Marmagne A, Soulay F, Masclaux-Daubresse C 2016: Identification of barley (Hordeum vulgare L.) autophagy genes and their expression levels during leaf senescence, chronic nitrogen limitation and in response to dark exposure. Agronomy, 6, 15. doi:10.3390/agronomy6010015
  • Avin-Wittenberg T, Honig A, Galili G 2012: Variations on a theme: Plant autophagy in comparison to yeast and mammals. Protoplasma, 249, 285–299. doi:10.1007/s00709-011-0296-z
  • Bartholomew CR, Suzuki T, Du Z et al. 2012: Ume6 transcription factor is part of a signaling cascade that regulates autophagy. Proc. Natl. Acad. Sci. U. S. A., 109, 11206–11210. doi:10.1073/pnas.1200313109
  • Bassham DC, Laporte M, Marty F, Moriyasu Y, Ohsumi Y, Olsen LJ, Yoshimoto K 2006: Autophagy in development and stress responses of plants. Autophagy, 2, 2–11. doi:10.4161/auto.2092
  • Brauer EK, Shelp BJ 2010: Nitrogen use efficiency: Re-consideration of the bioengineering approach. Botany, 88, 103–109. doi:10.1139/B09-111
  • Chiba A, Ishida H, Nishizawa NK, Makino A, Mae T 2003: Exclusion of ribulose-1,5-bisphosphate carboxylase/oxygenase from chloroplasts by specific bodies in naturally senescing leaves of wheat. Plant Cell Physiol., 44, 914–921. doi:10.1093/pcp/pcg118
  • Chung T, Suttangkakul A, Vierstra RD 2009: The ATG autophagic conjugation system in maize: ATG transcripts and abundance of the ATG8-lipid adduct are regulated by development and nutrient availability. Plant Physiol., 149, 220–234. doi:10.1104/pp.108.126714
  • Doelling JH, Walker JM, Friedman EM, Thompson AR, Vierstra RD 2002: The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana. J. Biol. Chem., 277, 33105–33114. doi:10.1074/jbc.M204630200
  • Good AG, Shrawat AK, Muench DG 2004: Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci., 9, 597–605. doi:10.1016/j.tplants.2004.10.008
  • Guiboileau A, Avila-Ospina L, Yoshimoto K, Soulay F, Azzopardi M, Marmagne A, Lothier J, Masclaux-Daubresse C 2013: Physiological and metabolic consequences of autophagy deficiency for the management of nitrogen and protein resources in Arabidopsis leaves depending on nitrate availability. New Phytol., 199, 683–694. doi:10.1111/nph.12307
  • Guiboileau A, Yoshimoto K, Soulay F, Bataillé M-P, Avice J-C, Masclaux-Daubresse C 2012: Autophagy machinery controls nitrogen remobilization at the whole-plant level under both limiting and ample nitrate conditions in Arabidopsis. New Phytol., 194, 732–740. doi:10.1111/j.1469-8137.2012.04084.x
  • Hanaoka H, Noda T, Shirano Y et al. 2002: Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol., 129, 1181–1193. doi:10.1104/pp.011024
  • Hidema J, Makino A, Kurita Y, Mae T, Ojima K 1992: Changes in the levels of chlorophyll and light-harvesting chlorophyll a/b protein of PS II in rice leaves aged under different irradiances from full expansion through senescence. Plant Cell Physiol., 33, 1209–1214.
  • Hörtensteiner S, Kräutler B 2011: Chlorophyll breakdown in higher plants. Biochim. Biophys. Acta Bioenerg., 1807, 977–988. doi:10.1016/j.bbabio.2010.12.007
  • Ichimura Y, Kirisako T, Takao T et al. 2000: A ubiquitin-like system mediates protein lipidation. Nature, 408, 488–492. doi:10.1038/35044114
  • Ishida H, Izumi M, Wada S, Makino A 2014: Roles of autophagy in chloroplast recycling. Biochim. Biophys. Acta, 1837, 512–521. doi:10.1016/j.bbabio.2013.11.009
  • Ishida H, Yoshimoto K 2008: Chloroplasts are partially mobilized to the vacuole by autophagy. Autophagy, 4, 961–962. doi:10.4161/auto.6804
  • Ishida H, Yoshimoto K, Izumi M, Reisen D, Yano Y, Makino A, Ohsumi Y, Hanson MR, Mae T 2008: Mobilization of rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process. Plant Physiol., 148, 142–155. doi:10.1104/pp.108.122770
  • Izumi M, Hidema J, Makino A, Ishida H 2013: Autophagy contributes to nighttime energy availability for growth in Arabidopsis. Plant Physiol., 161, 1682–1693. doi:10.1104/pp.113.215632
  • Izumi M, Hidema J, Wada S, Kondo E, Kurusu T, Kuchitsu K, Makino A, Ishida H 2015: Establishment of monitoring methods for autophagy in rice reveals autophagic recycling of chloroplasts and root plastids during energy limitation. Plant Physiol., 167, 1307–1320. doi:10.1104/pp.114.254078
  • Izumi M, Ishida H, Nakamura S, Hidema J 2017: Entire photodamaged chloroplasts are transported to the central vacuole by autophagy. Plant Cell, 29, 377–394. doi:10.1105/tpc.16.00637
  • Jin M, He D, Backues SK, Freeberg M, Liu X, Kim J, Klionsky D 2014: Transcriptional regulation by Pho23 modulates the frequency of autophagosome formation. Curr. Biol., 24, 1314–1322. doi:10.1016/j.cub.2014.04.048
  • Jin M, Klionsky DJ 2014: Regulation of autophagy: Modulation of the size and number of autophagosomes. FEBS Lett., 588, 2457–2463. doi:10.1016/j.febslet.2014.06.015
  • Kanno K, Suzuki Y, Makino A 2017: A small decrease in Rubisco content by individual suppression of RBCS genes leads to the improvement of photosynthesis and greater biomass production in rice under conditions of elevated CO2. Plant Cell Physiol., 58, 635–642. doi:10.1093/pcp/pcx018
  • Kant S, Bi Y-M, Rothstein SJ 2011: Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. J. Exp. Bot., 62, 1499–1509. doi:10.1093/jxb/erq297
  • Krupinska K 2006: Fate and activities of plastids during leaf senescence. In The Structure and Function of Plastids, Eds. Wize R, Hoober JK, pp. 433–449. Springer, Dordrecht.
  • Kurusu T, Koyano T, Hanamata S et al. 2014: OsATG7 is required for autophagy-dependent lipid metabolism in rice postmeiotic anther development. Autophagy, 10, 878–888. doi:10.4161/auto.28279
  • Levine B, Klionsky DJ 2004: Development by self-digestion: Molecular mechanisms and biological functions of autophagy. Dev. Cell, 6, 463–477. doi:10.1016/s1534-5807(04)00099-1
  • Li F, Chung T, Pennington JG, Federico ML, Kaeppler HF, Kaeppler SM, Otegui MS, Vierstra RD 2015a: Autophagic recycling plays a central role in maize nitrogen remobilization. Plant Cell, 27, 1389–1408. doi:10.1105/tpc.15.00158
  • Li F, Vierstra RD 2012: Autophagy: A multifaceted intracellular system for bulk and selective recycling. Trends Plant Sci., 17, 526–537. doi:10.1016/j.tplants.2012.05.006
  • Li W, Chen M, Wang E et al. 2016: Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice. BMC Genom., 17, 797. doi:10.1186/s12864-016-3113-4
  • Li W-W, Chen M, Zhong L, Liu J-M, Xu Z-S, Li L-C, Zhou Y-B, Guo C-H, Ma Y-Z 2015b: Overexpression of the autophagy-related gene SiATG8a from foxtail millet (Setaria italica L.) confers tolerance to both nitrogen starvation and drought stress in Arabidopsis. Biochem. Biophys. Res. Commun., 468, 800–806. doi:10.1016/j.bbrc.2015.11.035
  • Liu Y, Bassham DC 2010: TOR is a negative regulator of autophagy in Arabidopsis thaliana. PLoS One, 5, e11883. doi:10.1371/journal.pone.0011883
  • Mae T, Inaba A, Kaneta Y, Masaki S, Sasaki M, Aizawa M, Okawa S, Hasegawa S, Makino A 2006: A large-grain rice cultivar, Akita-63, exhibits high yields with high physiological N-use efficiency. Field Crops Res., 97, 227–237. doi:10.1016/j.fcr.2005.10.003
  • Mae T, Kai N, Makino A, Ohira K 1984: Relation between ribulose bisphosphate carboxylase content and chloroplast number in naturally senescing primary leaves of wheat. Plant Cell Physiol., 25, 333–336.
  • Mae T, Makino A, Ohira K 1983: Changes in the amounts of ribulose bisphosphate carboxylase synthesized and degraded during the life span of rice leaf (Oryza sativa L.). Plant Cell Physiol., 24, 1079–1086.
  • Mae T, Shoji S 1984: 15N-Studies on the fate of fertilizer nitrogen and soil nitrogen in paddy fields and the absorption and utilization of nitrogen in rice plants in northeastern Japan. In Soil Science and Plant Nutrition in Northeastern Japan (Special Issue), Ed. Northeastern Section of the Japanese Society of Soil Science and Plant Nutrition, pp. 77–94. Northeastern Section of the Japanese Society of Soil Science and Plant Nutrition, Sendai (in Japanese).
  • Makino A 2011: Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. Plant Physiol., 155, 125–129. doi:10.1104/pp.110.165076
  • Makino A, Mae T, Ohira K 1984: Relation between nitrogen and ribulose-1,5-bisphosphate carboxylase in rice leaves from emergence through senescence. Plant Cell Physiol., 25, 429–437.
  • Makino A, Osmond B 1991: Effects of nitrogen nutrition on nitrogen partitioning between chloroplasts and mitochondria in pea and wheat. Plant Physiol., 96, 355–362. doi:10.1104/pp.96.2.355
  • Makino A, Sakuma H, Sudo E, Mae T 2003: Differences between maize and rice in N-use efficiency for photosynthesis and protein allocation. Plant Cell Physiol., 44, 952–956. doi:10.1093/pcp/pcg113
  • Martinoia E, Heck U, Dalling MJ, Matile P 1983: Changes in chloroplast number and chloroplast constituents in senescing barley leaves. Biochem. Physiol. Pflanz., 178, 147–155. doi:10.1016/S0015-3796(83)80028-6
  • Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A 2010: Nitrogen uptake, assimilation and remobilization in plants: Challenges for sustainable and productive agriculture. Ann. Bot., 105, 1141–1157. doi:10.1093/aob/mcq028
  • Michaeli S, Honig A, Levanony H, Peled-Zehavi H, Galili G 2014: Arabidopsis ATG8-INTERACTING PROTEIN1 is involved in autophagy-dependent vesicular trafficking of plastid proteins to the vacuole. Plant Cell, 26, 4084–4101. doi:10.1105/tpc.114.129999
  • Mizushima N, Noda T, Yoshimori T et al. 1998: A protein conjugation system essential for autophagy. Nature, 395, 395–398. doi:10.1038/26506
  • Mizushima N, Yoshimori T, Ohsumi Y 2011: The role of Atg proteins in autophagosome formation. Annu. Rev. Cell. Dev. Biol., 27, 107–132. doi:10.1146/annurev-cellbio-092910-154005
  • Nakatogawa H, Ichimura Y, Ohsumi Y 2007: Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell, 130, 165–178. doi:10.1016/j.cell.2007.05.021
  • Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y 2009: Dynamics and diversity in autophagy mechanisms: Lessons from yeast. Nat. Rev. Mol. Cell Biol., 10, 458–467. doi:10.1038/nrm2708
  • Noda NN, Inagaki F 2015: Mechanisms of autophagy. Annu. Rev. Biophys., 44, 101–122. doi:10.1146/annurev-biophys-060414-034248
  • Noda NN, Ohsumi Y, Inagaki F 2010: Atg8-family interacting motif crucial for selective autophagy. FEBS Lett., 584, 1379–1385. doi:10.1016/j.febslet.2010.01.018
  • Noda T, Kim J, Huang W-P, Baba M, Tokunaga C, Ohsumi Y, Klionsky DJ 2000: Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the CVT and autophagy pathways. J. Cell Biol., 148, 465–480. doi:10.1083/jcb.148.3.465
  • Ono Y, Wada S, Izumi M, Makino A, Ishida H 2013: Evidence for contribution of autophagy to Rubisco degradation during leaf senescence in Arabidopsis thaliana. Plant Cell Environ., 36, 1147–1159. doi:10.1111/pce.12049
  • Phillips AR, Suttangkakul A, Vierstra RD 2008: The ATG12-conjugating enzyme ATG10 is essential for autophagic vesicle formation in Arabidopsis thaliana. Genetics, 178, 1339–1353. doi:10.1534/genetics.107.086199
  • Raun WR, Johnson GV 1999: Improving nitrogen use efficiency for cereal production. Agron. J., 91, 357–363. doi:10.2134/agronj1999.00021962009100030001x
  • Rothstein SJ 2007: Returning to our roots: Making plant biology research relevant to future challenges in agriculture. Plant Cell, 19, 2695–2699. doi:10.1105/tpc.107.053074
  • Schulze W, Schulze E-D, Stadler J, Heilmeier H, Stitt M, Mooney HA 1994: Growth and reproduction of Arabidopsis thaliana in relation to storage of starch and nitrate in the wild-type and in starch-deficient and nitrate-uptake-deficient mutants. Plant Cell Environ., 17, 795–809. doi:10.1111/j.1365-3040.1994.tb00174.x
  • Shin KD, Lee HN, Chung T 2014: A revised assay for monitoring autophagic flux in Arabidopsis thaliana reveals involvement of AUTOPHAGY-RELATED9 in autophagy. Mol. Cells, 37, 399–405. doi:10.14348/molcells.2014.0042
  • Slavikova S, Ufaz S, Avin-Wittenberg T, Levanony H, Galili G 2008: An autophagy-associated Atg8 protein is involved in the responses of Arabidopsis seedlings to hormonal controls and abiotic stresses. J. Exp. Bot., 59, 4029–4043. doi:10.1093/jxb/ern244
  • Suttangkakul A, Li F, Chung T, Vierstra RD 2011: The ATG1/ATG13 protein kinase complex is both a regulator and a target of autophagic recycling in Arabidopsis. Plant Cell, 23, 3761–3779. doi:10.1105/tpc.111.090993
  • Takeshige K, Baba M, Tsuboi S, Noda T, Ohsumi Y 1992: Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J. Cell Biol., 119, 301–311. doi:10.1083/jcb.119.2.301
  • Thomas H, Stoddart JL 1980: Leaf senescence. Annu. Rev. Plant Physiol., 31, 83–111. doi:10.1146/annurev.pp.31.060180.000503
  • Thompson AR, Doelling JH, Suttangkakul A, Vierstra RD 2005: Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol., 138, 2097–2110. doi:10.1104/pp.105.060673
  • Tsukada M, Ohsumi Y 1993: Isolation and characterization of autophagy-defective mutants of saccharomyces-cerevisiae. FEBS Lett., 333, 169–174. doi:10.1016/0014-5793(93)80398-e
  • Vitousek PM, Naylor R, Crews T et al. 2009: Nutrient imbalances in agricultural development. Science, 324, 1519–1520. doi:10.1126/science.1170261
  • Wada S, Hayashida Y, Izumi M et al. 2015: Autophagy supports biomass production and nitrogen use efficiency at the vegetative stage in rice. Plant Physiol., 168, 60–73. doi:10.1104/pp.15.00242
  • Wada S, Ishida H, Izumi M, Yoshimoto K, Ohsumi Y, Mae T, Makino A 2009: Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. Plant Physiol., 149, 885–893. doi:10.1104/pp.108.130013
  • Wittenbach VA, Lin W, Hebert RR 1982: Vacuolar localization of proteases and degradation of chloroplasts in mesophyll protoplasts from senescing primary wheat leaves. Plant Physiol., 69, 98–102. doi:10.1104/pp.69.1.98
  • Wuebbles DJ 2009: Nitrous oxide: No laughing matter. Science, 326, 56–57. doi:10.1126/science.1179571
  • Xia K, Liu T, Ouyang J, Wang R, Fan T, Zhang M 2011: Genome-wide identification, classification, and expression analysis of autophagy-associated gene homologues in rice (Oryza sativa L.). DNA Res., 18, 363–377. doi:10.1093/dnares/dsr024
  • Xia T, Xiao D, Liu D, Chai W, Gong Q, Wang NN 2012: Heterologous expression of ATG8c from soybean confers tolerance to nitrogen deficiency and increases yield in Arabidopsis. PLoS One, 7, e37217. doi:10.1371/journal.pone.0037217
  • Xie Z, Nair U, Klionsky DJ 2008: Atg8 controls phagophore expansion during autophagosome formation. Mol. Biol. Cell, 19, 3290–3298. doi:10.1091/mbc.E07-12-1292
  • Xiong Y, Contento AL, Bassham DC 2005: AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana. Plant J., 42, 535–546. doi:10.1111/j.1365-313X.2005.02397.x
  • Xu G, Fan X, Miller AJ 2012: Plant nitrogen assimilation and use efficiency. Annu. Rev. Plant Biol., 63, 153–182. doi:10.1146/annurev-arplant-042811-105532
  • Yao Z, Delorme-Axford E, Backues SK, Klionsky DJ 2015: Atg41/Icy2 regulates autophagosome formation. Autophagy, 11, 2288–2299. doi:10.1080/15548627.2015.1107692
  • Yoshimoto K 2012: Beginning to understand autophagy, an intracellular self-degradation system in plants. Plant Cell Physiol., 53, 1355–1365. doi:10.1093/pcp/pcs099
  • Yoshimoto K, Hanaoka H, Sato S et al. 2004: Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell, 16, 2967–2983. doi:10.1105/tpc.104.025395
  • Yoshimoto K, Takano Y, Sakai Y 2010: Autophagy in plants and phytopathogens. FEBS Lett., 584, 1350–1358. doi:10.1016/j.febslet.2010.01.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.