1,648
Views
10
CrossRef citations to date
0
Altmetric
Environment

Intercontinental comparison of greenhouse gas emissions from irrigated rice fields under feasible water management practices: Brazil and Japan

, , , &
Pages 59-67 | Received 27 Apr 2017, Accepted 07 Dec 2017, Published online: 26 Dec 2017

References

  • Ali M, Hoque MA, Kim P 2013: Mitigating global warming potentials of methane and nitrous oxide gases from rice paddies under different irrigation regimes. Ambio, 42, 357–368. doi:10.1007/s13280-012-0349-3
  • Banker BC, Kludze HK, Alford DP, LeLaune RD, Lindau CW 1995: Methane sources and sinks in paddry rice soils: relationship to emissions. Agric. Ecosyst. Environ., 53, 243–251. doi:10.1016/0167-8809(94)00578-3
  • Bayer C, FdS C, Pedroso GM, Zschornack T, Camargo ES, MAd L, Frigheto RTS, Gomes J, Marcolin E, Macedo VRM 2014: Yield-scaled greenhouse gas emissions from flood irrigated rice under long-term conventional tillage and no-till systems in a Humid Subtropical climate. Field Crops Res, 162, 60–69. doi:10.1016/j.fcr.2014.03.015
  • Bayer C, Zschornack T, Pedroso GM, Rosa CM, Camargo ES, Boeni M, Marcolin E, Reis CES, Santos DC 2015: A seven-year study on the effects of fall soil tillage on yield-scaled greenhouse gas emission from flood irrigated rice in a humid subtropical climate. Soil Till. Res., 145, 118–125. doi:10.1016/j.still.2014.09.001
  • Cai ZC, Xing G, Yan X, Xu H, Tsuruta H, Yagi K, Minami K 1997: Methane and nitrous oxide emissions from paddy fields as affected by nitrogen fertilizers and water management. Plant Soil, 196, 7–14. doi:10.1023/A:1004263405020
  • Chapuis-Lardy L, Wrage-Mönnig N, Metay A, Chotte JL, Bernoux M 2007: Soils, a sink for N2O? A review. Glob. Chane. Biol., 13, 1–17. doi:10.1111/j.1365-2486.2006.01280.x
  • Chirinda N, Arenas LN, Katto MC, et al. 2017: Sustainable and low greenhouse gas emitting rice production in Latin America and the Caribbean: a dream or a fantasy? Sustainability.
  • Climate-data 2014: Clima: Cachoeirinha. https://pt.climate-data.org/region/187/?page=5 e Clima: Nagaoka. https://pt.climate-data.org/location/5520/5
  • CONAB 2015: Companhia Nacional De Abastecimento - Acompanhamento Da Safra Brasileira De Grãos. Safra 2014/15- Quinto Levantamento, pp. 1–116. Companhia Nacional de Abastecimento, Brasília (in Portuguese).
  • Costa FdS, Bayer C, Lima MA, Frighetto RTS, Macedo VRM, Marcolin E 2008: Variação diária da emissão de metano em solo cultivado com arroz irrigado no Sul do Brasil. Ciência Rural, 38, 2049–2053. doi:10.1590/S0103-84782008000700041
  • Counce PA, Keisling TC, Michell AJ 2000: A uniform, objective, and adaptative system for expressing rice development. Crop Sci., 40, 436–443. doi:10.2135/cropsci2000.402436x
  • DeAngelo BJ, Chesnaye FC, Beach RH, Sommer A, Murray BC 2006: Methane and nitrous oxide mitigation in agriculture. Energy J, Multi-Greenhouse Gas Mitigation Climate Policy Special Issue, 27, 89–108.
  • Denier vand der Gon, Neue HAC, Neue HU 1995: Influence of organic matter incorporation on the methane emission from a wetland rice field. Global Biochem. Cycles, 7, 11–12.
  • GRiSP (Global Rice Science Partnership) 2013: Annual progress report 2013: CCIAR Research Program on Rice (GRiSP). http://hdl.handle.net/10947/3085 (March, 2017).
  • Hadi A, Inubushi K, Yagi K 2010: Effect of water management on greenhouse gas emissions and microbial properties of paddy soils in Japan and Indonesia. Paddy. Water. Environ., 8, 319–324. doi:10.1007/s10333-010-0210-x
  • Hou H, Peng S, Xu J, Yang S, Mao Z 2012: Seasonal variations of CH4 and N2O emissions in response to water management of paddy fields located in Southeast China. Chemosphere, 89, 884–892. doi:10.1016/j.chemosphere.2012.04.066
  • IBGE 2014 Statistics of Agricultural Production. (in portuguese). ftp://ftp.ibge.-gov.br/Producao_Agricola/Fasciculo_Indicadores_IBGE/estProdAgr_201404.pdf (1 May, 2017)
  • IPCC 2007: Intergovernmental Panel on Climate Change. Climate change 2007-The Physical Science Basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change, http://www.ipcc.ch/pdf/assessment-rport/ar4/wg1/ar4_wg1_full_report.pdf (10 July, 2017).
  • IRRI 2013: Rice facts. http://irri.org (24 August, 2016).
  • Itoh M, Sudo S, Mori S et al. 2011: Mitigation of methane emissions from paddy fields by prolonging midseason drainage. Agric. Ecosyst. Environ, 141, 359–372. doi:10.1016/j.agee.2011.03.019
  • Johnson-Beebout SE, Angeles OR, Alberto MCR, Buresh RJ 2009: Simultaneous minimization of nitrous oxide and methane emission from rice paddy soils is improbable due to redox potential changes with depth in a greenhouse experiment without plants. Geoderma, 149, 45–53. doi:10.1016/j.geoderma.2008.11.012
  • Kim GY, Gutierrez J, Jeong HC, Lee JS, Haque MDM, Kim P 2014: Effect of intermittent drainage on methane and nitrous oxide emissions under different fertilization in a temperate paddy soil during rice cultivation. J. Korean Soc. Appl. Biol. Chem., 57, 229–236. doi:10.1007/s13765-013-4298-8
  • Kumar V, Ladha JK 2011: Direct seeding of rice: recent developments and future research needs. Adv. Agron., 111, 297–413.
  • Liu S, Qin Y, Zou J, Liu Q 2010: Effects of water regime during rice-growing season on annual direct N2O emission in a paddy rice–winter wheat rotation system in southeast China. Sci. Total Environ., 408, 906–913. doi:10.1016/j.scitotenv.2009.11.002
  • Lu Y, Wassmann R, Neue HU, Changyong H 2000: Dynamics of dissolved organic carbon and methane emissionsin a flooded rice soil. Soil. Sci. Soc. Am. J, 64, 2011–2017. doi:10.2136/sssaj2000.6462011x
  • Ma K, Conrad R, Lu Y 2013: Dry/Wet cycles change the activity and population dynamics of methanotrophs in rice field soil. App. Environm. Ecol., 79, 4932–4939.
  • Ma K, Lu Y 2011: Regulation of microbial methane production and oxidation by intermittent drainage in rice field soil. FEMS Microbiol. Ecol., 75, 446–456. doi:10.1111/j.1574-6941.2010.01018.x
  • Malyan SK, Bhatia A, Kumar A, Gupta DK, Singh R, Kumar SS, Tomer R, Kumar O, Jain N 2016: Methane production, oxidation and mitigation: a mechanistic understanding and comprehensive evaluation of influencing factors. Sci. Total environm. 572, 874–896. doi:10.1016/j.scitotenv.2016.07.182
  • Minamikawa K, Sakai N, Yagi K 2006: Methane emission from paddy fields and its migitation options on a field scale. Microbes. Environ., 21, 135–147. doi:10.1264/jsme2.21.135
  • Minamikawa K, Yagi K, Tokida T, Sander BO, Wassmann R 2012: Appropriate frequency and time of day to measure methane emissions from an irrigated rice paddy in Japan using the manual closed chamber method. Greenhouse Gas Meas. Manag., 2, 118–128. doi:10.1080/20430779.2012.729988
  • Moterle DF, Silva LS, Moro VJ, Bayer C, Zschornack T, Avila LA, Bundt AC 2013: Methane efflux in rice paddy field under different irrigation managements. R. Bras. Ci. Solo, 37, 431–437. doi:10.1590/S0100-06832013000200014
  • Mushtaq S, Khan S, Haffez N, Hanjra MA 2009: Does reliability of water resources matter in the adoption of water-saving irrigation practices? A case study in the Zhanghe irrigation system. China. Water Policy, 11, 661–679. doi:10.2166/wp.2009.033
  • Nishimura S, Sawamoto T, Akiyama H, Sudo S, Yagi K 2004: Methane and nitrous oxide emission and controls from a paddy field with Japanese conventional water management and fertilizer application. Global Biogeochem. Cycles, 18. doi:10.1029/2003GB002207
  • Peel MC, Finlayson BL, McMahon TA 2007: Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci., 11, 1633–1644. doi:10.5194/hess-11-1633-2007
  • Reddy KR, DeLaune RD 2008: Biogeochemistry of Wetlands: science and Applications, CRC Press, Florida.
  • SEEG 2014: Análise Da Evolução Das Emissões De GEE No Brasil (1990-2012): setor agropecuário/Instituto De Manejo E Certificação Florestal E Agrícola, pp. 32. Observatório do Clima, São Paulo. (in Portuguese).
  • Shiratori Y, Watanabe H, Furukawa Y, Tsuruta H, Inubushi K 2007: Effectiveness of a subsurface drainage system in poorly drained paddy fields on reduction of methane emissions. Soil Sci. Plant Nutr., 53, 387–400. doi:10.1111/j.1747-0765.2007.00171.x
  • Silva LS, Griebeler G, Moterle DF, Bayer C, Zschornack T, Pocojeski E 2011: Dinamics of methane emissions in soils under rice cultivation in Southern Brazil. R. Bras. Ci. Solo, 35, 473–481. (in Portuguese with English abstract). doi:10.1590/S0100-06832011000200016
  • Sosbai 2014: Arroz Irrigado: recomendações Técnicas Da Pesquisa Para O Sul Do Brasil, pp. 192. Sociedade Sul-Brasileira de Arroz Irrigado, Santa Maria. (in Portuguese).
  • Towprayoon S, Smakgahn K, Poonkaew S 2005: Mitigation of methane and nitrous oxide emissions from drained irrigated rice fields. Chemosphere, 59, 1547–1556. doi:10.1016/j.chemosphere.2005.02.009
  • Yan X, Du L, Shi S, Xing G 2000: Nitroux oxide emission from wetland rice soil as affected by the application of controlled-availabity fertilizers and mid-season aeration. Biol. Fertil. Soils, 32, 60–66. doi:10.1007/s003740000215
  • Yu K, Bohme F, Rinklebe J, Neue HU, DeLaune RD 2007: Major biogeochemical processes in soils - a microcosm incutation from reducing to oxidizing conditions. Soil. Sci. Soc. Am. J, 71, 1406–1417. doi:10.2136/sssaj2006.0155
  • Zhang G, Ji Y, Ma J, Xu H, Cai Z, Yagi K 2012: Intermittent irrigation changes production, oxidation, and emission of CH4 in paddy fields determined with stable carbon isotope technique. Soil Biol. Biochem., 52, 108–116. doi:10.1016/j.soilbio.2012.04.017
  • Zou J, Huang Y, Jiang J, Zheng X, Sass RL 2005: A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: effects of water regime, crop residue, and fertilizer application. Global Biogeochem Cycles, 19, GB, 2021. doi:10.1029/2004GB002401
  • Zou J, Huang Y, Zong L, Zheng X, Wang Y 2004: Carbon dioxide, methane, and nitrous oxide emissions from a rice-wheat rotation as affected by crop residue incorporation and temperature. Adv. Atmos Sci., 21, 691–698. doi:10.1007/BF02916366
  • Zschornack T, Rosa CM, Pedroso GM, Marcolin E, Silva PRF, Bayer C 2016: Mitigation of yield-scaled greenhouse gas emissions in subtropical paddy rice under alternative irrigation systems. Nutr. Cycl Agroecosyst, 105, 61–73. doi:10.1007/s10705-016-9775-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.