711
Views
3
CrossRef citations to date
0
Altmetric
Soil chemistry and soil mineralogy

Quantification methods of pyrogenic carbon in soil with soil as a complex matrix: comparing the CTO-375 and Cr2O7 methods

, , , , &
Pages 380-388 | Received 17 Sep 2020, Accepted 01 May 2021, Published online: 09 Jul 2021

References

  • Agarwal, T., and T. D. Bucheli. 2011. “Adaptation, Validation and Application of the Chemo-thermal Oxidation Method to Quantify Black Carbon in Soils.” Environmental Pollution 159 (2): 532–538. doi:10.1016/j.envpol.2010.10.012.
  • Barthod, J., C. Rumpel, and M.-F. Dignac. 2018. “Composting with Additives to Improve Organic Amendments. A Review.” Agronomy for Sustainable Development 38 (2): 17. doi:10.1007/s13593-018-0491-9.
  • Bird, M. I., J. G. Wynn, G. Saiz, C. M. Wurster, and A. McBeath. 2015. “The Pyrogenic Carbon Cycle.” Annual Review of Earth and Planetary Sciences 43 (1): 273–298. doi:10.1146/annurev-earth-060614-105038.
  • Dong, X., G. Li, Q. Lin, and X. Zhao. 2017. “Quantity and Quality Changes of Biochar Aged for 5 years in Soil under Field Conditions.” CATENA 159: 136–143. doi:10.1016/j.catena.2017.08.008.
  • Elmquist, M., Ö. Gustafsson, and P. Andersson. 2004. “Quantification of Sedimentary Black Carbon Using the Chemothermal Oxidation Method: An Evaluation of Ex Situ Pretreatments and Standard Additions Approaches.” Limnology and Oceanography-Methods 2 (12): 417–427. doi:10.4319/lom.2004.2.417.
  • Elmquist, M., G. Cornelissen, Z. Kukulska, and Ö. Gustafsson. 2006. “Distinct Oxidative Stabilities of Char versus Soot Black Carbon: Implications for Quantification and Environmental Recalcitrance.” Global Biogeochemical Cycles 20 (2): GB2009. doi:10.1029/2005GB002629.
  • Elmquist, M., I. Semiletov, L. Guo, and Ö. Gustafsson. 2008. “Pan-Arctic Patterns in Black Carbon Sources and Fluvial Discharges Deduced from Radiocarbon and PAH Source Apportionment Markers in Estuarine Surface Sediments.” Global Biogeochemical Cycles 22 (2): GB2018. doi:10.1029/2007gb002994.
  • FAO. 2001. “Lecture Notes on the Major Soils of the World.” In World Soil Resources Reports, 94, edited by P. Driessen, J. Deckers, O. Spaargaren, and F. Nachtergaele, pp. 334. Rome, Italy:FAO. Accessed 2 March 2020. http://www.fao.org/3/a-y1899e.pdf.
  • Gustafsson, Ö., F. Haghseta, C. Chan, J. MacFarlane, and P. M. Gschwend. 1997. “Quantification of the Dilute Sedimentary Soot Phase: Implications for PAH Speciation and Bioavailability.” Environmental Science & Technology 31 (1): 203–209. doi:10.1021/es960317s.
  • Hammes, K., M. W. I. Schmidt, R. J. Smernik, L. A. Currie, W. P. Ball, T. H. Nguyen, P. Louchouarn, et al. 2007. “Comparison of Quantification Methods to Measure Fire-derived (Black/elemental) Carbon in Soils and Sediments Using Reference Materials from Soil, Water, Sediment and the Atmosphere.” Global Biogeochemical Cycles 21 (3): GB3016. doi:10.1029/2006GB002914.
  • Henmi, T., and K. Wada. 1974. “Surface Acidity of Imogolite and Allophane.” Clay Minerals 10 (4): 231–245. doi:10.1180/claymin.1974.010.4.02.
  • Ikeya, K., R. L. Sleighter, P. G. Hatcher, and A. Watanabe. 2015. “Characterization of the Chemical Composition of Soil Humic Acids Using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.” Geochimica Et Cosmochimica Acta 153: 169–182. doi:10.1016/j.gca.2015.01.002.
  • Kerré, B., C. T. Bravo, J. Leifeld, G. Cornelissen, and E. Smolders. 2016. “Historical Soil Amendment with Charcoal Increases Sequestration of Non-charcoal Carbon: A Comparison among Methods of Black Carbon Quantification.” European Journal of Soil Science 67 (3): 324–331. doi:10.1111/ejss.12338.
  • Kuo, L.-J., B. E. Herbert, and P. Louchouarn. 2008. “Can Levoglucosan Be Used to Characterize and Quantify Char/charcoal Black Carbon in Environmental Media?.” Organic Geochemistry 39 (10): 1466–1478. doi:10.1016/j.orggeochem.2008.04.026.
  • Lehmann, J. 2007. “Bio-energy in the Black.” Frontiers in Ecology and the Environment 5 (7): 381–387. doi:10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2.
  • Lim, B., and H. Cachier. 1996. “Determination of Black Carbon by Chemical Oxidation and Thermal Treatment in Recent Marine and Lake Sediments and Cretaceous-Tertiary Clays.” Chemical Geology 131 (1–4): 143–154. doi:10.1016/0009-2541(96)00031-9.
  • Lohmann, R., K. Bollinger, M. Cantwell, J. Feichter, I. Fischer-Bruns, and M. Zabel. 2009. “Fluxes of Soot Black Carbon to South Atlantic Sediments.” Global Biogeochemical Cycles 23 (1): GB1015. doi:10.1029/2008gb003253.
  • Murano, H., T. Otani, T. Makino, N. Seike, and M. Sakai. 2009. “Effects of Application of Carbonaceous Adsorbents on Pumpkin (Cucurbita Maxima) Uptake of Heptachlor Epoxide in Soil.” Soil Science and Plant Nutrition 55 (2): 325–332. doi:10.1111/j.1747-0765.2009.00361.x.
  • Myneni, S. C. B. 2019. “Chemistry of Natural Organic Matter-the Next Step: Commentary on a Humic Substances Debate.” Journal of Environmental Quality 48 (2): 233–235. doi:10.2134/jeq2019.02.0002c.
  • Nanzyo, M., R. Dahlgren, and S. Shoji. 1993. “Chapter 6 Chemical Characteristics of Volcanic Ash Soils.” In Developments in Soil Science, edited by S. Shoji, M. Nanzyo, and R. Dahlgren, 145–187. Amsterdam, Netherlands: Elsevier. doi:10.1016/S0166-2481(08)70267-8.
  • Ottmar, R. D. 2014. “Wildland Fire Emissions, Carbon, and Climate: Modeling Fuel Consumption.” Forest Ecology and Management 317: 41–50. doi:10.1016/j.foreco.2013.06.010.
  • Qi, F., S. Kuppusamy, R. Naidu, N. S. Bolan, Y. S. Ok, D. Lamb, Y. Li, L. Yu, K. T. Semple, and H. Wang. 2017. “Pyrogenic Carbon and Its Role in Contaminant Immobilization in Soils.” Critical Reviews in Environmental Science and Technology 47 (10): 795–876. doi:10.1080/10643389.2017.1328918.
  • Reisser, M., R. S. Purves, M. W. I. Schmidt, and S. Abiven. 2016. “Pyrogenic Carbon in Soils: A Literature-based Inventory and A Global Estimation of Its Content in Soil Organic Carbon and Stocks.” Frontiers in Earth Science 4: 80. doi:10.3389/feart.2016.00080.
  • Salvadó, J. A., L. Bröder, A. Andersson, I. P. Semiletov, and Ö. Gustafsson. 2017. “Release of Black Carbon from Thawing Permafrost Estimated by Sequestration Fluxes in the East Siberian Arctic Shelf Recipient.” Global Biogeochemical Cycles 31 (10): 1501–1515. doi:10.1002/2017gb005693.
  • Sánchez-García, L., I. Cato, and Ö. Gustafsson. 2012. “The Sequestration Sink of Soot Black Carbon in the Northern European Shelf Sediments.” Global Biogeochem. Cycles 26 (1): GB1001. doi:10.1029/2010gb003956.
  • Santín, C., S. H. Doerr, A. Merino, T. D. Bucheli, R. Bryant, P. Ascough, X. Gao, and C. A. Masiello. 2017. “Carbon Sequestration Potential and Physicochemical Properties Differ between Wildfire Charcoals and Slow-pyrolysis Biochars.” Scientific Reports 7 (1): 11233. doi:10.1038/s41598-017-10455-2.
  • Santín, C., S. H. Doerr, E. S. Kane, C. A. Masiello, M. Ohlson, J. M. De La Rosa, C. M. Preston, and T. Dittmar. 2016. “Towards a Global Assessment of Pyrogenic Carbon from Vegetation Fires.” Global Change Biology 22 (1): 76–91. doi:10.1111/gcb.12985.
  • Schmidt, H.-P., A. Anca-Couce, N. Hagemann, C. Werner, D. Gerten, W. Lucht, and C. Kammann. 2019. “Pyrogenic Carbon Capture and Storage.” GCB Bioenergy 11 (4): 573–591. doi:10.1111/gcbb.12553.
  • Schmidt, M. W. I. 2007. “Potentially Interfering Materials: Melanoidin.” Accessed 20 January 2015. http://www.geo.uzh.ch/microsite/bc/web-content/HTML%20pages/referencematerials/interfere.html.
  • Seiter, K., C. Hensen, J. Schröter, and M. Zabel. 2004. “Organic Carbon Content in Surface Sediments—defining Regional Provinces.” Deep Sea Research Part I: Oceanographic Research Papers 51 (12): 2001–2026. doi:10.1016/j.dsr.2004.06.014.
  • Soma, Y., and M. Soma. 1989. “Chemical Reactions of Organic Compounds on Clay Surfaces.” Environmental Health Perspectives 83: 205–214. doi:10.1289/ehp.8983205.
  • Spokas, K. A., K. B. Cantrell, J. M. Novak, D. W. Archer, J. A. Ippolito, H. P. Collins, A. A. Boateng, et al. 2012. “Biochar: A Synthesis of Its Agronomic Impact beyond Carbon Sequestration.” Journal of Environmental Quality 41 (4): 973–989. doi:10.2134/jeq2011.0069.
  • Wang, C. 2004. “A Modeling Study on the Climate Impacts of Black Carbon Aerosols.” Journal of Geophysical Research, [Atmospheres] 109 (D3): D03106. doi:10.1029/2003jd004084.
  • Zhang, X., H. Wang, L. He, K. Lu, A. Sarmah, J. Li, N. S. Bolan, J. Pei, and H. Huang. 2013. “Using Biochar for Remediation of Soils Contaminated with Heavy Metals and Organic Pollutants.” Environmental Science and Pollution Research 20 (12): 8472–8483. doi:10.1007/s11356-013-1659-0.
  • Zhu, M., M. Li, S. Wei, J. Song, J. Hu, W. Jia, and P. Peng. 2019. “Evaluation of a Dichromate Oxidation Method for the Isolation and Quantification of Black Carbon in Ancient Geological Samples.” Organic Geochemistry 133: 20–31. doi:10.1016/j.orggeochem.2019.03.009.
  • Zimmerman, A. R., and S. Mitra. 2017. “Trial by Fire: On the Terminology and Methods Used in Pyrogenic Organic Carbon Research.” Frontiers in Earth Science 5: 95. doi:10.3389/feart.2017.00095.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.