301
Views
3
CrossRef citations to date
0
Altmetric
Special Section - Rhizosphere 2022

Acclimation to NaCl and H2O2 develops cross tolerance to saline-alkaline stress in Rice (Oryza sativa L.) by enhancing fe acquisition and ROS homeostasis

, , &
Pages 342-352 | Received 19 May 2021, Accepted 04 Jul 2021, Published online: 19 Jul 2021

References

  • Apel, K., and H. Hirt. 2004. “Reactive Oxygen Species: Metabolism, Oxidative Stress, and Signal Transduction.” Annual Review of Plant Biology 55 (1): 373–399. doi:10.1146/annurev.arplant.55.031903.141701.
  • Atkinson, N. J., and P. E. Urwin. 2012. “The Interaction of Plant Biotic and Abiotic Stresses: From Genes to the Field.” Journal of Experimental Botany 63 (10): 3523–3544. doi:10.1093/jxb/ers100.
  • Ayala, A., M. F. Muñoz, and S. Argüelles. 2014. “Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal.” Oxidative Medicine and Cellular Longevity 2014: 360438. doi:10.1155/2014/360438.
  • Beauchamp, C., and I. Fridovich. 1971. “Superoxide Dismutase: Improved Assays and an Assay Applicable to Acrylamide Gels.” Analytical Biochemistry 44 (1): 276–287. doi:10.1016/0003-2697(71)90370-8.
  • Bradford, M. M. 1976. “A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding.” Analytical Biochemistry 72 (1–2): 248–254. doi:10.1016/0003-2697(76)90527-3.
  • Cao, Y., M. Zhang, X. Liang, F. Li, Y. Shi, X. Yang, and C. Jiang. 2020. “Natural Variation Af an EF-Hand Ca2+-Binding-Protein Coding Gene Confers Saline-Alkaline Tolerance in Maize.” Nature Communications 11: 1–14.
  • Chen, Z., I. I. Pottosin, T. A. Cuin, A. T. Fuglsang, M. Tester, D. Jha, and S. Shabala. 2007. “Root Plasma Membrane Transporters Controlling K+/Na+ Homeostasis in Salt Stressed Barley.” Plant Physiology 145 (4): 1714–1725. doi:10.1104/pp.107.110262.
  • Chuamnakthong, S., M. Nampei, and A. Ueda. 2019. “Characterization of Na+ Exclusion Mechanism in Rice under Saline-Alkaline Stress Conditions.” Plant Science 287: 110171. doi:10.1016/j.plantsci.2019.110171.
  • Farooq, S., and F. Azam. 2006. “The Use of Cell Membrane Stability (CMS) Technique to Screen for Salt Tolerant Wheat Varieties.” Journal of Plant Physiology 163 (6): 629–637. doi:10.1016/j.jplph.2005.06.006.
  • Fedina, I. S., D. Nedeva, and N. Çiçek. 2009. “Pre-treatment with H2O2 Induces Salt Tolerance in Barley Seedlings.” Biologia Plantarum 53 (2): 321–324. doi:10.1007/s10535-009-0058-3.
  • Foyer, C. H., B. Rasool, J. W. Davey, and R. D. Hancock. 2016. “Cross-Tolerance to Biotic and Abiotic Stresses in Plants: A Focus on Resistance to Aphid Infestation.” Journal of Experimental Botany 67 (7): 2025–2037. doi:10.1093/jxb/erw079.
  • Guo, M., R. Wang, J. Wang, K. Hua, Y. Wang, X. Liu, and S. Yao. 2014. “ALT1, a Snf2 Family Chromatin Remodeling ATPase, Negatively Regulates Alkaline Tolerance through Enhanced Defense against Oxidative Stress in Rice.” PLoS ONE 9 (12): e112515. doi:10.1371/journal.pone.0112515.
  • Haruta, M., and M. R. Sussman. 2012. “The Effect of a Genetically Reduced Plasma Membrane Protonmotive Force on Vegetative Growth of Arabidopsis.” Plant Physiology 158 (3): 1158–1171. doi:10.1104/pp.111.189167.
  • Hodges, D. M., J. M. DeLong, C. F. Forney, and R. K. Prange. 1999. “Improving the Thiobarbituric Acid-Reactive-Substances Assay for Estimating Lipid Peroxidation in Plant Tissues Containing Anthocyanin and Other Interfering Compounds.” Planta 207 (4): 604–611. doi:10.1007/s004250050524.
  • Jia, B., M. Sun, H. Duanmu, X. Ding, B. Liu, Y. Zhu, and X. Sun. 2017. “GsCHX19.3, A Member of Cation/H+ Exchanger Superfamily from Wild Soybean Contributes to High Salinity and Carbonate Alkaline Tolerance.” Scientific Reports. 7
  • Kamanga, R. M., K. Echigo, K. Yodoya, A. M. M. Mekawy, and A. Ueda. 2020. “Salinity Acclimation Ameliorates Salt Stress in Tomato (Solanum Lycopersicum L.) Seedlings by Triggering a Cascade of Physiological Processes in the Leaves.” Scientia Horticulturae 270: 109434. doi:10.1016/j.scienta.2020.109434.
  • Kobayashi, T., and N. K. Nishizawa. 2012. “Iron Uptake, Translocation, and Regulation in Higher Plants.” Annual Review of Plant Biology 63 (1): 131–152. doi:10.1146/annurev-arplant-042811-105522.
  • Li, Q., A. Yang, and W. H. Zhang. 2016. “Efficient Acquisition of Iron Confers Greater Tolerance to Saline-alkaline Stress in Rice (Oryza Sativa L.).” Journal of Experimental Botany 67 (22): 6431–6444. doi:10.1093/jxb/erw407.
  • Liu, L., and H. Saneoka. 2019. “Effects of NaHCO3 Acclimation on Rye (Secale Cereale) Growth under Sodic-Alkaline Stress.” Plants 8 (9): 314. doi:10.3390/plants8090314.
  • Marschner, H. 1995. “Adaptation of Plants to Adverse Chemical Soil Conditions.” In Mineral Nutrition of Higher Plantsedited by Horst Marschner. 596-680. Cambridge, Massachusetts: Academic Press.
  • Marschner, H., and P. Marschner. 2012. Marschner’s Mineral Nutrition of Higher Plants. Cambridge, Massachusetts: Academic Press.
  • Masuda, H., M. Suzuki, K. C. Morikawa, T. Kobayashi, H. Nakanishi, M. Takahashi, and N. K. Nishizawa. 2008. “Increase in Iron and Zinc Concentrations in Rice Grains via the Introduction of Barley Genes Involved in Phytosiderophore Synthesis.” Rice 1 (1): 100–108. doi:10.1007/s12284-008-9007-6.
  • Masuda, H., K. Usuda, T. Kobayashi, Y. Ishimaru, Y. Kakei, M. Takahashi, and N. K. Nishizawa. 2009. “Overexpression of the Barley Nicotianamine Synthase Gene HvNAS1 Increases Iron and Zinc Concentrations in Rice Grains.” Rice 2 (4): 155–166. doi:10.1007/s12284-009-9031-1.
  • Mekawy, A. M. M., M. N. Abdelaziz, and A. Ueda. 2018. “Apigenin Pretreatment Enhances Growth and Salinity Tolerance of Rice Seedlings.” Plant Physiology and Biochemistry 130: 94–104. doi:10.1016/j.plaphy.2018.06.036.
  • Mittler, R. 2017. “ROS are Good.” Trends in Plant Science 22 (1): 11–19. doi:10.1016/j.tplants.2016.08.002.
  • Moriyama, Y. 2015. „Vacuolar H+-ATPase and the Secondary Transporters: Their Identification, Mechanism, Function and Physiological Relevance.„ Yakugaku Zasshi : Journal of the Pharmaceutical Society of Japan 135 (7): 883–894. doi:10.1248/yakushi.15-00081.
  • Munns, R., and M. Tester. 2008. “Mechanisms of Salinity Tolerance.” Annual Review of Plant Biology 59 (1): 651–681. doi:10.1146/annurev.arplant.59.032607.092911.
  • Nakanishi, H., N. K. Nishizawa, S. Kim, M. Takahashi, N. K. Nishizawa, N. K. Nishizawa, and H. Yamaguchi. 2004. “Directed Evolution of Yeast Ferric Reductase to Produce Plants with Tolerance to Iron Deficiency in Alkaline Soils.” Soil Science and Plant Nutrition 50 (7): 1159–1165. doi:10.1080/00380768.2004.10408589.
  • Pandolfi, C., E. Azzarello, S. Mancuso, and S. Shabala. 2016. “Acclimation Improves Salt Stress Tolerance in Zea Mays Plants.” Journal of Plant Physiology 201: 1–8. doi:10.1016/j.jplph.2016.06.010.
  • Pandolfi, C., S. Mancuso, and S. Shabala. 2012. “Physiology of Acclimation to Salinity Stress in Pea (Pisum Sativum).” Environmental and Experimental Botany 84: 44–51. doi:10.1016/j.envexpbot.2012.04.015.
  • Pastori, G. M., and C. H. Foyer. 2002. “Common Components, Networks, and Pathways of Cross-Tolerance to Stress. The Central Role of “Redox” and Abscisic Acid-Mediated Controls.” Plant Physiology 129 (2): 460–468. doi:10.1104/pp.011021.
  • Perez, I. B., and P. J. Brown. 2014. “The Role of ROS Signaling in Cross-Tolerance: From Model to Crop.” Frontiers in Plant Science 5: 1–6. doi:10.3389/fpls.2014.00754.
  • Shabala, S., S. Shabala, T. A. Cuin, J. Pang, W. Percey, Z. Chen, and L. H. Wegner. 2010. “Xylem Ionic Relations and Salinity Tolerance in Barley.” The Plant Journal 61 (5): 839–853. doi:10.1111/j.1365-313X.2009.04110.x.
  • Sriskantharajah, K., S. Osumi, S. Chuamnakthong, M. Nampei, J. C. Amas, G. B. Gregorio, and A. Ueda. 2020. “Contribution of Two Different Na+ Transport Systems to Acquired Salinity Tolerance in Rice.” Plant Science 297: 110517. doi:10.1016/j.plantsci.2020.110517.
  • Suharsono, U., Y. Fujisawa, T. Kawasaki, Y. Iwasaki, H. Satoh, and K. Shimamoto. 2002. “The Heterotrimeric G Protein Subunit Acts Upstream of the Small GTPase Rac in Disease Resistance of Rice.” Proceedings of the National Acadamy of Sciences of the United States of America 99 (20): 13307–13312. doi:10.1073/pnas.192244099.
  • Suzuki, M., K. C. Morikawa, H. Nakanishi, M. Takahashi, M. Saigusa, S. Mori, and N. K. Nishizawa. 2008. “Transgenic Rice Lines that Include Barley Genes Have Increased Tolerance to Low Iron Availability in a Calcareous Paddy Soil.” Soil Science and Plant Nutrition 54 (1): 77–85. doi:10.1111/j.1747-0765.2007.00205.x.
  • Takagi, H., and S. Yamada. 2013. “Roles of Enzymes in Anti-Oxidative Response System on Three Species of Chenopodiaceous Halophytes under NaCl-Stress Condition.” Soil Science and Plant Nutrition 59 (4): 603–611. doi:10.1080/00380768.2013.809600.
  • Umezawa, T., K. Shimizu, M. Kato, and T. Ueda. 2000. “Enhancement of Salt Tolerance in Soybean with NaCl Pretreatment.” Physiologia Plantarum 110 (1): 59–63. doi:10.1034/j.1399-3054.2000.110108.x.
  • Wahid, A., M. Perveen, S. Gelani, and S. M. A. Basra. 2007. “Pretreatment of Seed with H2O2 Improves Salt Tolerance of Wheat Seedlings by Alleviation of Oxidative Damage and Expression of Stress Proteins.” Journal of Plant Physiology 164 (3): 283–294. doi:10.1016/j.jplph.2006.01.005.
  • Yang, C. W., H. H. Xu, L. L. Wang, J. Liu, D. C. Shi, and D. L. Wang. 2009. “Comparative Effects of Salt-Stress and Alkali-Stress on the Growth, Photosynthesis, Solute Accumulation, and Ion Balance of Barley Plants.” Photosynthetica 47 (1): 79–86. doi:10.1007/s11099-009-0013-8.
  • Yang, Z., C. Wang, Y. Xue, X. Liu, S. Chen, C. P. Song, and Y. Guo. 2019. “Calcium-activated 14-3-3 Proteins as a Molecular Switch in Salt Stress Tolerance.” Nature Communications 10: 1–9.
  • Zhang, H., X. L. Liu, R. X. Zhang, H. Y. Yuan, M. M. Wang, H. Y. Yang, and Z. W. Liang. 2017. “Root Damage under Alkaline Stress Is Associated with Reactive Oxygen Species Accumulation in Rice (Oryza Sativa L.).” Frontiers in Plant Science 8: 1580. doi:10.3389/fpls.2017.01580.
  • Zhang, Z., K. He, T. Zhang, D. Tang, R. Li, and S. Jia. 2019. “Physiological Responses of Goji Berry (Lycium Barbarum L.) To Saline-Alkaline Soil from Qinghai Region, China.” Scientific Reports 9 (1): 12057. doi:10.1038/s41598-019-48514-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.