257
Views
3
CrossRef citations to date
0
Altmetric
Special Section - Rhizosphere 2022

Ethylene works as a possible regulator for the rootlet elongation and transcription of genes for phosphorus acquisition in cluster roots of Lupinus albus L.

, ORCID Icon & ORCID Icon
Pages 383-392 | Received 14 Dec 2021, Accepted 03 Mar 2022, Published online: 18 Mar 2022

References

  • Abel, S., C. A. Ticconi, and C. A. Delatorre. 2002. “Phosphate Sensing in Higher Plants.” Physiologia Plantarum 115 (1): 1–8. doi:10.1034/j.1399-3054.2002.1150101.x.
  • Adams, D., and S. F. Yang. 1979. “Ethylene Biosynthesis-Identification of 1-Aminocyclopropane-1-Carboxylic Acid as an Intermediate in the Conversion of Methionine to Ethylene.” Proceedings of the National Academy of Sciences of the USA 76 (1): 170–174. doi:10.1073/pnas.76.1.170.
  • Bichara, S., P. Mazzafera, and S. A. L. de Andrade. 2021. “Root Morphological Changes in Response to Low Phosphorus Concentration in Eucalypt Species.” Trees-Structure and Function 35 (6): 1933–1943. doi:10.1007/s00468-021-02161-4.
  • Chapin, L. J., and M. L. Jones. 2009. “Ethylene Regulates Phosphorus Remobilization and Expression of a Phosphate Transporter (Phpt1) during Petunia Corolla Senescence.” Journal of Experimental Botany 60 (7): 2179–2190. doi:10.1093/jxb/erp092.
  • Cheng, M. C., P. M. Liao, W. W. Kuo, and T. P. Lin. 2013. “The Arabidopsis Ethylene Response Factor1 Regulates Abiotic Stress-Responsive Gene Expression by Binding to Different Cis-Acting Elements in Response to Different Stress Signals.” Plant Physiology 162 (3): 1566–1582. doi:10.1104/pp.113.221911.
  • Cordell, D., J. O. Drangert, and S. White. 2008. “The Story of Phosphorus: Global Food Security and Food for Thought.” Global Environmental Change-Human and Policy Dimensions 19 (2): 292–305. doi:10.1016/j.gloenvcha.2008.10.009.
  • Du, Y. J., and B. Scheres. 2018. “Lateral Root Formation and the Multiple Roles of Auxin.” Journal of Experimental Botany 69 (2): 155–167. doi:10.1093/jxb/erx223.
  • Fukaki, H., and M. Tasaka. 2009. “Hormone Interactions During Lateral Root Formation.” Plant Molecular Biology 69 (4): 437–449. doi:10.1007/s11103-008-9417-2.
  • Gallardo, C., B. Hufnagel, C. Casset, C. Alcon, F. Garcia, F. Divol, L. Marques, P. Doumas, and B. Peret. 2019. “Anatomical and Hormonal Description of Rootlet Primordium Development along White Lupin Cluster Root.” Physiologia Plantarum 165 (1): 4–16. doi:10.1111/ppl.12714.
  • Gilbert, G. A., J. D. Knight, C. P. Vance, and D. L. Allan. 2000. “Proteoid Root Development of Phosphorus Deficient Lupin Is Mimicked by Auxin and Phosphonate.” Annals of Botany 85 (6): 921–928. doi:10.1006/anbo.2000.1133.
  • Hinsinger, P. 2001. “Bioavailability of Soil Inorganic P in the Rhizosphere as Affected by Root-Induced Chemical Changes: A Review.” Plant and Soil 237 (2): 173–195. doi:10.1023/A:1013351617532.
  • Hufnagel, B., A. Marques, A. Soriano, L. Marques, F. Divol, P. Doumas, E. Sallet, D. Mancinotti, S. Carrere, and W. Marande. 2020. “High-Quality Genome Sequence of White Lupin Provides Insight into Soil Exploration and Seed Quality.” Nature Communications 11 (1): 492. doi:10.1038/s41467-019-14197-9.
  • Ivanchenko, M. G., G. K. Muday, and J. G. Dubrovsky. 2008. “Ethylene-Auxin Interactions Regulate Lateral Root Initiation and Emergence in Arabidopsis Thaliana.” Plant Journal 55 (2): 335–347. doi:10.1111/j.1365-313X.2008.03528.x.
  • Jiang, L., J. Yang, C. X. Liu, Z. P. Chen, Z. C. Yao, and S. Q. Cao. 2020. “Overexpression of Ethylene Response Factor ERF96 Gene Enhances Selenium Tolerance in Arabidopsis.” Plant Physiology and Biochemistry 149: 294–300. doi:10.1016/j.plaphy.2020.02.024.
  • Johnson, J. F., D. L. Allan, and C. P. Vance. 1994. “Phosphorus Stress-Induced Proteoid Roots Show Altered Metabolism in Lupinus Albus.” Plant Physiology 104 (2): 657–665. doi:10.1104/pp.104.2.657.
  • Jung, J. Y., R. Shin, and D. P. Schachtman. 2009. “Ethylene Mediates Response and Tolerance to Potassium Deprivation in Arabidopsis.” The Plant Cell 21 (2): 607–621. doi:10.1105/tpc.108.063099.
  • Kihara, T., T. Wada, Y. Suzuki, T. Hara, and K. Koyama. 2003. “Alteration of Citrate Metabolism in Cluster Roots of White Lupin.” Plant & Cell Physiology 44 (9): 901–908. doi:10.1093/pcp/pcg115.
  • Lambers, H., E. Martinoia, and M. Renton. 2015. “Plant Adaptations to Severely Phosphorus-Impoverished Soils.” Current Opinion in Plant Biology 25: 23–31. doi:10.1016/j.pbi.2015.04.002.
  • Lambers, H., M. W. Shane, M. D. Cramer, S. J. Pearse, and E. J. Veneklaas. 2006. “Root Structure and Functioning for Efficient Acquisition of Phosphorus: Matching Morphological and Physiological Traits.” Annals of Botany 98 (4): 693–713. doi:10.1093/aob/mcl114.
  • Lau, O. L., and S. F. Yang. 1976. “Inhibition of Ethylene Production by Cobaltous Ion.” Plant Physiology 58 (1): 114–117. doi:10.1104/pp.58.1.114.
  • Le Thanh, T., B. Hufnagel, A. Soriano, F. Divol, L. Brottier, C. Casset, B. Peret, P. Doumas, and L. Marques. 2021. “Dynamic Development of White Lupin Rootlets along a Cluster Root.” Frontiers in Plant Science 12: 738172. doi:10.3389/fpls.2021.738172.
  • Lei, M. G., C. M. Zhu, Y. D. Liu, A. S. Karthikeyan, R. A. Bressan, K. G. Raghothama, and D. Liu. 2011. “Ethylene Signalling Is Involved in Regulation of Phosphate Starvation-Induced Gene Expression and Production of Acid Phosphatases and Anthocyanin in Arabidopsis.” New Phytologist 189 (4): 1084–1095. doi:10.1111/j.1469-8137.2010.03555.x.
  • Lewis, D. R., S. Negi, P. Sukumar, and G. K. Muday. 2011. “Ethylene Inhibits Lateral Root Development, Increases IAA Transport and Expression of PIN3 and PIN7 Auxin Efflux Carriers.” Development 138 (16): 3485–3495. doi:10.1242/dev.065102.
  • Li, Y. S., Y. Gao, Q. Y. Tian, F. L. Shi, L. H. Li, and W. H. Zhang. 2011. “Stimulation of Root Acid Phosphatase by Phosphorus Deficiency Is Regulated by Ethylene in Medicago Falcata.” Environmental and Experimental Botany 71 (1): 114–120. doi:10.1016/j.envexpbot.2010.11.007.
  • Li, W. F., and P. Lan. 2017. “The Understanding of the Plant Iron Responses in Strategy I Plants and the Role of Ethylene in This Process by Omic Approaches.” Frontiers in Plant Science 8: 40. doi:10.3389/fpls.2017.00040.
  • Liu, T. Y., W. Y. Lin, T. K. Huang, and T. J. Chiou. 2014. “MicroRNA-Mediated Surveillance of Phosphate Transporters on the Move.” Trends in Plant Science 19 (10): 647–655. doi:10.1016/j.tplants.2014.06.004.
  • Liu, Y., Y. R. Xie, H. Wang, X. J. Ma, W. J. Yao, and H. Y. Wang. 2017. “Light and Ethylene Coordinately Regulate the Phosphate Starvation Response through Transcriptional Regulation of Phosphate Starvation Response1.” The Plant Cell 29 (9): 2269–2284. doi:10.1105/tpc.17.00268.
  • Locke, J. M., J. H. Bryce, and P. C. Morris. 2000. “Contrasting Effects of Ethylene Perception and Biosynthesis Inhibitors on Germination and Seedling Growth of Barley (Hordeum Vulgare L.).” Journal of Experimental Botany 51 (352): 1843–1849. doi:10.1093/jexbot/51.352.1843.
  • Lucena, C., B. M. Waters, F. J. Romera, M. J. Garcia, M. Morales, E. Alcantara, and R. Perez-Vicente. 2006. “Ethylene Could Influence Ferric Reductase, Iron Transporter, and H+-ATPase Gene Expression by Affecting FER (Or FER-like) Gene Activity.” Journal of Experimental Botany 57 (15): 4145–4154. doi:10.1093/jxb/erl189.
  • Malheiros, R. S. P., L. C. Costa, R. T. Avila, T. M. Pimenta, L. S. Teixeira, F. A. L. Brito, A. Zsogon, W. L. Araujo, and D. M. Ribeiro. 2019. “Selenium Downregulates Auxin and Ethylene Biosynthesis in Rice Seedlings to Modify Primary Metabolism and Root Architecture.” Planta 250 (1): 333–345. doi:10.1007/s00425-019-03175-6.
  • Murphy, J., and J. P. Riley. 1962. “A Modified Single Solution Method for the Determination of Phosphate in Natural Waters.” Analytic Chemical Acta 27: 31–36. doi:10.1016/S0003-2670(00)88444-5.
  • Negi, S., M. G. Ivanchenko, and G. K. Muday. 2008. “Ethylene Regulates Lateral Root Formation and Auxin Transport in Arabidopsis Thaliana.” The Plant Journal 55 (2): 175–187. doi:10.1111/j.1365-313X.2008.03495.x.
  • Neumann, G., and E. Martinoia. 2002. “Cluster Roots – An Underground Adaptation for Survival in Extreme Environments.” Trends in Plant Science 7 (4): 162–167. doi:10.1016/S1360-1385(02)02241-0.
  • Neumann, G., A. Massonneau, E. Martinoia, and V. Romheld. 1999. “Physiological Adaptations to Phosphorus Deficiency during Proteoid Root Development in White Lupin.” Planta 208 (3): 373–382. doi:10.1007/s004250050572.
  • Nishida, S., Y. Kakei, Y. Shimada, and T. Fujiwara. 2017. “Genome-Wide Analysis of Specific Alterations in Transcript Structure and Accumulation Caused by Nutrient Deficiencies in Arabidopsis Thaliana.” The Plant Journal 91 (4): 741–753. doi:10.1111/tpj.13606.
  • Palit, S., A. Sharma, and G. Talukder. 1994. “Effects of Cobalt on Plants.” Botanical Review 60 (2): 149–181. doi:10.1007/BF02856575.
  • Peret, B., M. Clement, L. Nussaume, and T. Desnos. 2011. “Root Developmental Adaptation to Phosphate Starvation: Better Safe than Sorry.” Trends in Plant Science 16 (8): 442–450. doi:10.1016/j.tplants.2011.05.006.
  • Ramaiah, M., A. Jain, and K. G. Raghothama. 2014. “Ethylene Response Factor070 Regulates Root Development and Phosphate Starvation-Mediated Responses.” Plant Physiology 164 (3): 1484–1498. doi:10.1104/pp.113.231183.
  • Schachtman, D. P., R. J. Reid, and S. M. Ayling. 1998. “Phosphorus Uptake by Plants: From Soil to Cell.” Plant Physiology 116 (2): 447–453. doi:10.1104/pp.116.2.447.
  • Secco, D., H. X. Shou, J. Whelan, and O. Berkowitz. 2014. “RNA-Seq Analysis Identifies an Intricate Regulatory Network Controlling Cluster Root Development in White Lupin.” BMC Genomics 15: 230. doi:10.1186/1471-2164-15-230.
  • Shane, M. W., M. D. Cramer, S. Funayama-Noguchi, G. R. Cawthray, A. H. Millar, D. A. Day, and H. Lambers. 2004. “Development Physiology of Cluster-Root Carboxylate Synthesis and Exudation in Harsh Hakea. Expression of Phosphoenolpyruvate Carboxylase and the Alternative Oxidase.” Plant Physiology 135 (1): 549–560. doi:10.1104/pp.103.035659.
  • Skene, K. R. 2000. “Pattern Formation in Cluster Roots: Some Developmental and Evolutionary Considerations.” Annals of Botany 85 (6): 901–908. doi:10.1006/anbo.2000.1140.
  • Song, L., and D. Liu. 2015. “Ethylene and Plant Responses to Phosphate Deficiency.” Frontiers in Plant Science 6: 796. doi:10.3389/fpls.2015.00796.
  • Song, L., H. P. Yu, J. S. Dong, X. M. Che, Y. L. Jiao, and D. Liu. 2016. “The Molecular Mechanism of Ethylene-Mediated Root Hair Development Induced by Phosphate Starvation.” PLoS Genetics 12 (7): e1006194. doi:10.1371/journal.pgen.1006194.
  • Strader, L. C., G. L. Chen, and B. Bartel. 2010. “Ethylene Directs Auxin to Control Root Cell Expansion.” The Plant Journal 64 (5): 874–884. doi:10.1111/j.1365-313X.2010.04373.x.
  • Takita, E., H. Koyama, Y. Shirano, D. Shibata, and T. Hara. 1999. “Structure and Expression of the Mitochondrial Citrate Synthase Gene in Carrot Cells Utilizing Al-Phosphate.” Soil Science and Plant Nutrition 45 (1): 197–205. doi:10.1080/00380768.1999.10409335.
  • Tang, H. L., X. Q. Li, C. Zu, F. S. Zhang, and J. B. Shen. 2013. “Spatial Distribution and Expression of Intracellular and Extracellular Acid Phosphatase of Cluster Roots at Different Developmental Stages in White Lupin.” Journal of Plant Physiology 170 (14): 1243–1250. doi:10.1016/j.jplph.2013.04.015.
  • Tian, Q. Y., P. Sun, and W. H. Zhang. 2009. “Ethylene Is Involved in Nitrate-Dependent Root Growth and Branching in Arabidopsis Thaliana.” New Phytologist 184 (4): 918–931. doi:10.1111/j.1469-8137.2009.03004.x.
  • Tiziani, R., M. Puschenreiter, E. Smolders, T. Mimmo, J. C. Herrera, S. Cesco, and J. Santner. 2021. “Millimetre-Resolution Mapping of Citrate Exuded from Soil-grown Roots Using a Novel, Low-Invasive Sampling Technique.” Journal of Experimental Botany 72 (10): 3513–3525. doi:10.1093/jxb/erab123.
  • Vance, P. C., C. Uhde-Stone, and D. L. Allan. 2003. “Phosphorus Acquisition and Use: Critical Adaptations by Plants for Securing a Nonrenewable Resource.” New Phytologist 157 (3): 423–447. doi:10.1046/j.1469-8137.2003.00695.x.
  • Wang, Z. R., A. B. M. M. Rahman, G. Y. Wang, U. Ludewig, J. B. Shen, and G. Neumann. 2015. “Hormonal Interactions during Cluster-Root Development in Phosphate-Deficient White Lupin (Lupinus Albus L.).” Journal of Plant Physiology 117: 74–82. doi:10.1016/j.jplph.2014.10.022.
  • Wang, Z. R., D. Straub, H. Y. Yang, A. Kania, J. B. Shen, U. Ludewig, and G. Neumann. 2014. “The Regulatory Network of Cluster-Root Function and Development in Phosphate-Deficient White Lupin (Lupinus Albus) Identified by Transcriptome Sequencing.” Physiologia Plantarum 151 (3): 323–338. doi:10.1111/ppl.12187.
  • Wasaki, J., S. Dojima, H. Maruyama, S. Haase, M. Osaki, and E. Kndeler. 2008. “Localization of Acid Phosphatase Activities in the Roots of White Lupin Plants Grown under Phosphorus-Deficient Conditions.” Soil Science and Plant Nutrition 54 (1): 95–102. doi:10.1111/j.1747-0765.2007.00207.x.
  • Wasaki, J., M. Omura, M. Ando, H. Dateki, T. Shinan, M. Osaki, H. Ito, H. Matsui, and T. Tadano. 2000. “Molecular Cloning and Root Specific Expression of Secretory Acid Phosphatase from Phosphate Deficient Lupin (Lupinus Albus L.).” Soil Science and Plant Nutrition 46 (2): 427–437. doi:10.1080/00380768.2000.10408796.
  • Wasaki, J., M. Omura, M. Osaki, H. Ito, H. Matsui, T. Shinano, and T. Tadano. 1999. “Structure of a cDNA for an Acid Phosphatase from Phosphate-Deficient Lupin (Lupinus Albus L.) Roots.” Soil Science and Plant Nutrition 45 (2): 439–449. doi:10.1080/00380768.1999.10409358.
  • Wasaki, J., J. Sakaguchi, T. Yamamura, S. Ito, T. Shinano, M. Osaki, and E. Kandeler. 2018. “P and N Deficiency Change the Relative Abundance and Function of Rhizosphere Microorganisms during Cluster Root Development of White Lupin (Lupinus Albus L.).” Soil Science and Plant Nutrition 64 (6): 686–696. doi:10.1080/00380768.2018.1536847.
  • Wasaki, J., T. Yamamura, T. Shinano, and M. Osaki. 2003. “Secreted Acid Phosphatase Is Expressed in Cluster Roots of Lupin in Response to Phosphorus Deficiency.” Plant and Soil 248 (1–2): 129–136. doi:10.1023/A:1022332320384.
  • Watt, M., and J. R. Evans. 2003. “Phosphorus Acquisition from Soil by White Lupin (Lupinus Albus L.) And Soybean (Glycine Max L.), Species with Contrasting Root Development.” Plant and Soil 248 (1–2): 271–283. doi:10.1023/A:1022332700686.
  • Yang, X. Y., J. L. Yang, Y. Zhou, M. A. Pineros, L. V. Kochian, G. X. Li, and S. J. Zheng. 2011. “A de Novo Synthesis Citrate Transporter, Vigna Umbellata Multidrug and Toxic Compound Extrusion, Implicates in Al-Activated Citrate Efflux in Rice Bean (Vigna Umbellata) Root Apex.” Plant, Cell & Environment 34 (12): 2138–2148. doi:10.1111/j.1365-3040.2011.02410.x.
  • Zhou, Y. P., P. Olt, B. Neuhauser, N. Moradtalab, W. Bautista, C. Uhde-Stone, G. Neumann, and U. Ludewig. 2021. “Loss of LaMATE Impairs Isoflavonoid Release from Cluster Roots of Phosphorus-Deficient White Lupin.” Physiologia Plantarum 173 (3): 1207–1220. doi:10.1111/ppl.13515.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.