362
Views
0
CrossRef citations to date
0
Altmetric
Soil biology

Investigation of iron-reducing and iron-oxidizing bacterial communities in the rice rhizosphere of iron-toxic paddy field: a case study in Burkina Faso, West Africa

ORCID Icon, , , , , , , , , , & ORCID Icon show all
Pages 283-293 | Received 28 Mar 2023, Accepted 09 Sep 2023, Published online: 22 Sep 2023

References

  • Aung, M. S., and H. Masuda. 2020. “How Does Rice Defend Against Excess Iron?: Physiological and Molecular Mechanisms.” Frontiers in Plant Science 11:1102. https://doi.org/10.3389/fpls.2020.01102.
  • Becker, M., and F. Asch. 2005. “Iron Toxicity in Rice—Conditions and Management Concepts.” Journal of Plant Nutrition and Soil Science 168 (4): 558–573. https://doi.org/10.1002/jpln.200520504.
  • Benckiser, G., J. C. G. Ottow, I. Watanabe, and S. Santiago. 1984. “The Mechanism of Excessive Iron-Uptake (Iron Toxicity) of Wetland Rice.” Journal of Plant Nutrition 7 (1–5): 177–185. https://doi.org/10.1080/01904168409363184.
  • Benckiser, G., S. Santiago, H. U. Neue, I. Watanabe, and J. C. G. Ottow. 1984. “Effect of Fertilization on Exudation, Dehydrogenase Activity, Iron-Reducing Populations and Fe++ Formation in the Rhizosphere of Rice (Oryza Sativa L.) in Relation to Iron Toxicity.” Plant and Soil 79 (3): 305–316. https://doi.org/10.1007/BF02184324.
  • Bolyen, E., J. R. Rideout, M. R. Dillon, N. A. Bokulich, C. C. Abnet, G. A. Al-Ghalith, H. Alexander, et al. 2019. “Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2.” Nature Biotechnology 37 (8): 852–857. https://doi.org/10.1038/s41587-019-0209-9.
  • Callahan, B. J., P. J. McMurdie, M. J. Rosen, A. W. Han, A. J. A. Johnson, and S. P. Holmes. 2016. “DADA2: High-Resolution Sample Inference from Illumina Amplicon Data.” Nature Methods 13 (7): 581–583. https://doi.org/10.1038/nmeth.3869.
  • Emerson, D., J. V. Weiss, and J. P. Megonigal. 1999. “Iron-Oxidizing Bacteria are Associated with Ferric Hydroxide Precipitates (Fe-Plaque) on the Roots of Wetland Plants.” Applied and Environmental Microbiology 65 (6): 2758–2761. https://doi.org/10.1128/AEM.65.6.2758-2761.1999.
  • Hammann, R., and J. C. G. Ottow. 1974. “Reductive Dissolution of Fe2O3 by Saccharolytic Clostridia and Bacillus Polymyxa Under Anaerobic Conditions.” Journal of Plant Nutrition and Soil Science 137 (2): 108–115. https://doi.org/10.1002/jpln.19741370205.
  • Herlemann, D. P. R., M. Labrenz, K. Jürgens, S. Bertilsson, J. J. Waniek, and A. F. Andersson. 2011. “Transitions in Bacterial Communities Along the 2000 km Salinity Gradient of the Baltic Sea.” The ISME Journal 5 (10): 1571–1579. https://doi.org/10.1038/ismej.2011.41.
  • Jacq, V. A., K. Prade, and J. C. G. Ottow. 1991. “Iron Sulphide Accumulation in the Rhizosphere of Wetland Rice (Oryza Sativa L.) as the Result of Microbial Activities.” Developments in Geochemistry 6:453–468. https://doi.org/10.1016/B978-0-444-88900-3.50049-7.
  • Kappler, A., C. Bryce, M. Mansor, U. Lueder, J. M. Byrne, and E. D. Swanner. 2021. “An Evolving View on Biogeochemical Cycling of Iron.” Nature Reviews Microbiology 19:360–374. https://doi.org/10.1038/s41579-020-00502-7.
  • Keïta, A. 2015. Subsurface Drainage of Valley Bottom Irrigated Rice Schemes in Tropical Savannah: Case Studies of Tiefora and Moussodougou in Burkina Faso. Leiden, Netherlands: CRC Press/Balkema.
  • Khalifa, A., Y. Nakasuji, N. Saka, H. Honjo, S. Asakawa, and T. Watanabe. 2018. “Ferrigenium kumadai gen. nov., sp. nov., a Microaerophilic Iron-Oxidizing Bacterium Isolated from a Paddy Field Soil.” International Journal of Systematic and Evolutionary Microbiology 68 (8): 2587–2592. https://doi.org/10.1099/ijsem.0.002882.
  • Khan, N., B. Seshadri, N. Bolan, C. P. Saint, M. B. Kirkham, S. Chowdhury, N. Yamaguchi, et al. 2016. “Root Iron Plaque on Wetland Plants as a Dynamic Pool of Nutrients and Contaminants.” Advances in Agronomy 138:1–96. https://doi.org/10.1016/bs.agron.2016.04.002.
  • Kirk, G. J. D., H. R. Manwaring, Y. Ueda, V. K. Semwal, and M. Wissuwa. 2022. “Below-Ground Plant-Soil Interactions Affecting Adaptations of Rice to Iron Toxicity.” Plant, Cell & Environment 45 (3): 705–718. https://doi.org/10.1111/pce.14199.
  • Konaté, A. K., I. Wonni, A. Zongo, S. Kone, and M. Sawadogo. 2022. ““Étude de la variabilité des caractères agro-morphologique d’accessions de riz en condition de toxicité ferreuse.” Journal of Applied Biosciences 169 (1): 17599–17616. https://www.ajol.info/index.php/jab/article/view/233292.
  • Kyuma, K. 2004. Paddy Soil Science. Kyoto, Japan: Kyoto University Press.
  • Lovley, D. R., D. E. Holmes, and K. P. Nevin. 2004. “Dissimilatory Fe(III) and Mn(IV) Reduction.” Advances in Microbial Physiology 49:219–286. https://doi.org/10.1016/S0065-2911(04)49005-5.
  • Lozupone, C., and R. Knight. 2005. “UniFrac: A New Phylogenetic Method for Comparing Microbial Communities.” Applied and Environmental Microbiology 71 (12): 8228–8235. https://doi.org/10.1128/AEM.71.12.8228-8235.2005.
  • Mahender, A., B. P. M. Swamy, A. Anandan, and J. Ali. 2019. “Tolerance of Iron-Deficient and -Toxic Soil Conditions in Rice.” Plants 8 (2): 31. https://doi.org/10.3390/plants8020031.
  • Maisch, M., U. Lueder, A. Kappler, and C. Schmidt. 2019. “Iron Lung: How Rice Roots Induce Iron Redox Changes in the Rhizosphere and Create Niches for Microaerophilic Fe(II)-Oxidizing Bacteria.” Environmental Science & Technology Letters 6 (10): 600–605. https://doi.org/10.1021/acs.estlett.9b00403.
  • Maisch, M., U. Lueder, A. Kappler, and C. Schmidt. 2020. “From Plant to Paddy—How Rice Root Iron Plaque Can Affect the Paddy Field Iron Cycling.” Soil Systems 4 (2): 28. https://doi.org/10.3390/soilsystems4020028.
  • Martin, M. 2011. “Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads.” EMBnet journal 17 (1): 10–12. https://doi.org/10.14806/ej.17.1.200.
  • Masuda, Y., H. Itoh, Y. Shiratori, K. Isobe, S. Otsuka, and K. Senoo. 2017. “Predominant but Previously-Overlooked Prokaryotic Drivers of Reductive Nitrogen Transformation in Paddy Soils, Revealed by Metatranscriptomics.” Microbes and Environments 32 (2): 180–183. https://doi.org/10.1264/jsme2.ME16179.
  • Melandri, G., M. Sikirou, J. D. Arbelaez, A. Shittu, V. K. Semwal, K. A. Konaté, A. T. Maji, et al. 2021. “Multiple Small-Effect Alleles of Indica Origin Enhance High Iron-Associated Stress Tolerance in Rice Under Field Conditions in West Africa.” Frontiers in Plant Science 11:604938. https://doi.org/10.3389/fpls.2020.604938.
  • Nakagawa, K., J. Murase, S. Asakawa, and T. Watanabe. 2020. “Involvement of Microaerophilic Iron-Oxidizing Bacteria in the Iron-Oxidizing Process at the Surface Layer of Flooded Paddy Field Soil.” Journal of Soils and Sediments 20:4034–4041. https://doi.org/10.1007/s11368-020-02717-w.
  • Narteh, L. T., and K. L. Sahrawat. 1999. “Influence of Flooding on Electrochemical and Chemical Properties of West African Soils.” Geoderma 87 (3–4): 179–207. https://doi.org/10.1016/S0016-7061(98)00053-6.
  • Naruse, T., Y. Ban, T. Yoshida, T. Kato, M. Namikawa, T. Takahashi, M. Nishida, S. Asakawa, and T. Watanabe. 2019. “Community Structure of Microaerophilic Iron Oxidizing Bacteria in Japanese Paddy Field Soils.” Soil Science & Plant Nutrition 65 (5): 460–470. https://doi.org/10.1080/00380768.2019.1671139.
  • Neubauer, S. C., D. Emerson, and J. P. Megonigal. 2002. “Life at the Energetic Edge: Kinetics of Circumneutral Iron Oxidation by Lithotrophic Iron-Oxidizing Bacteria Isolated from the Wetland-Plant Rhizosphere.” Applied and Environmental Microbiology 68 (8): 3988–3995. https://doi.org/10.1128/AEM.68.8.3988-3995.2002.
  • Onaga, G., K. N. Dramé, and A. M. Ismail. 2016. “Understanding the Regulation of Iron Nutrition: Can It Contribute to Improving Iron Toxicity Tolerance in Rice?” Functional Plant Biology 43 (8): 709–726. https://doi.org/10.1071/FP15305.
  • Otoidobiga, C. H., A. Keita, H. Yacouba, A. S. Traore, and D. Dianou. 2015. “Dynamics and Activity of Iron-Reducing Bacterial Populations in a West African Rice Paddy Soil Under Subsurface Drainage: Case Study of Kamboinse in Burkina Faso.” Agricultural Science 6 (8): 860–869. https://doi.org/10.4236/as.2015.68083.
  • Otoidobiga, C. H., A. Sawadogo, Y. Sinaré, I. Ouédraogo, P. Zombré, S. Asakawa, A. S. Traore, and D. Dianou. 2016. “Effect of Fertilization on the Dynamics and Activity of Iron-Reducing Bacterial Populations in a West African Rice Paddy Soil Planted with Two Rice Varieties: Case Study of Kou Valley in Burkina Faso.” Journal of Environmental Protection 7 (8): 1119–1131. https://doi.org/10.4236/jep.2016.78101.
  • Ottow, J. C. G. 1970. “Bacterial Mechanism of Gley Formation in Artificially Submerged Soil.” Nature 225 (5227): 103. https://doi.org/10.1038/225103a0.
  • Ottow, J. C. G. 1981. “Mechanisms of Bacterial Iron-Reduction in Flooded Soils.” In Proceedings of Symposium on Paddy Soil, edited by Institute of Soil Science, Academia Sinica. New York, USA: Springer.
  • Ponnamperuma, F. N. 1972. “The Chemistry of Submerged Soils.” Advances in Agronomy 24:29–96. https://doi.org/10.1016/S0065-2113(08)60633-1.
  • Quast, C., E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer, P. Yarza, J. Peplies, and F. O. Glöckner. 2013. “The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools.” Nucleic Acids Research 41 (D1): D590–D596. https://doi.org/10.1093/nar/gks1219.
  • Rasheed, A., M. U. Hassan, M. Aamer, J. M. Bian, Z. R. Xu, X. F. He, G. Yan, and Z. M. Wu. 2020. “Iron Toxicity, Tolerance and Quantitative Trait Loci Mapping in Rice; a Review.” Applied Ecology and Environmental Research 18 (6): 7483–7498. https://doi.org/10.15666/aeer/1806_74837498.
  • Robeson, M. S. II., D. R. O’Rourke, B. D. Kaehler, M. Ziemski, M. R. Dillon, J. T. Foster, and N. A. Bokulich. 2021. “RESCRIPt: Reproducible Sequence Taxonomy Reference Database Management.” PLoS Computational Biology 17 (11): e1009581. https://doi.org/10.1371/journal.pcbi.1009581.
  • Sahrawat, K. L. 2004. “Iron Toxicity in Wetland Rice and the Role of Other Nutrients.” Journal of Plant Nutrition 27 (8): 1471–1504. https://doi.org/10.1081/PLN-200025869.
  • Segata, N., J. Izard, L. Waldron, D. Gevers, L. Miropolsky, W. S. Garrett, and C. Huttenhower. 2011. “Metagenomic Biomarker Discovery and Explanation.” Genome Biology 12 (6): R60. https://doi.org/10.1186/gb-2011-12-6-r60.
  • Sikirou, M., K. Saito, E. G. Achigan-Dako, K. N. Dramé, A. Ahanchédé, and R. Venuprasad. 2015. “Genetic Improvement of Iron Toxicity Tolerance in Rice-Progress, Challenges and Prospects in West Africa.” Plant Production Science 18 (4): 423–434. https://doi.org/10.1626/pps.18.423.
  • Sikirou, M., A. Shittu, K. A. Konaté, A. T. Maji, A. S. Ngaujah, K. A. Sanni, S. A. Ogunbayo, et al. 2018. “Screening African Rice (Oryza glaberrima) for Tolerance to Abiotic Stresses: I. Fe Toxicity.” Field Crops Research 220:3–9. https://doi.org/10.1016/j.fcr.2016.04.016.
  • Straub, K. L., A. Kappler, and B. Schink. 2005. “Enrichment and Isolation of Ferric-Iron- and Humic-Acid-Reducing Bacteria.” Methods in Enzymology 397:58–77. https://doi.org/10.1016/S0076-6879(05)97004-3.
  • Takai, Y., and T. Kamura. 1966. “The Mechanism of Reduction in Waterlogged Paddy Soil.” Folia Microbiology 11 (4): 304–313. https://doi.org/10.1007/BF02878902.
  • WARDA. 2002. “WARDA Annual Report 2001–2002.” Bouaké, Côte d’Ivoire.
  • Watanabe, T., N. Katayanagi, R. Agbisit, L. Llorca, Y. Hosen, and S. Asakawa. 2021. “Influence of Alternate Wetting and Drying Water-Saving Irrigation Practice on the Dynamics of Gallionella-Related Iron-Oxidizing Bacterial Community in Paddy Field Soil.” Soil Biology and Biochemistry 152:108064. https://doi.org/10.1016/j.soilbio.2020.108064.
  • Watanabe, T., H. Sumida, N. M. Do, K. Yano, S. Asakawa, and M. Kimura. 2013. “Bacterial Consortia in Iron-Deposited Colonies Formed on Paddy Soil Surface Under Microaerobic Conditions.” Soil Science and Plant Nutrition 59 (3): 337–346. https://doi.org/10.1080/00380768.2013.791807.
  • Weiss, J. V., D. Emerson, S. M. Backer, and J. P. Megonigal. 2003. “Enumeration of Fe(II)-Oxidizing and Fe(III)-Reducing Bacteria in the Root Zone of Wetland Plants: Implication for a Rhizosphere Iron Cycle.” Biogeochemistry 64 (1): 77–96. https://doi.org/10.1023/A:1024953027726.
  • Yoon, S. H., S. M. Ha, S. Kwon, J. Lim, Y. Kim, H. Seo, and J. Chun. 2017. “Introducing EzBiocloud: A Taxonomically United Database of 16S rRNA and Whole Genome Assemblies.” International Journal of Systematic and Evolutionary Microbiology 67 (5): 1613–1617. https://doi.org/10.1099/ijsem.0.001755.
  • Zahra, N., M. B. Hafeez, K. Shaukat, A. Wahid, and M. Hasanuzzaman. 2021. “Fe Toxicitiy in Plants: Impacts and Remediation.” Physiologia Plantarum 173 (1): 201–222. https://doi.org/10.1111/ppl.13361.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.