Publication Cover
Spectroscopy Letters
An International Journal for Rapid Communication
Volume 50, 2017 - Issue 3
224
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Poly(thymine)-templated copper nanoparticles as a fluorescence probe for highly selective and rapid detection of cysteine

, , , , , & show all
Pages 137-142 | Received 30 Aug 2016, Accepted 18 Feb 2017, Published online: 05 May 2017

References

  • Liu, B.; Wang, J.; Zhang, G.; Bai, R.; Pang, Y. Flavone-based ESIPT ratiometric chemodosimeter for detection of cysteine in living cells. ACS Applied Materials & Interfaces 2014, 6(6), 4402–4407.
  • Nekrassova, O.; Lawrence, N. S.; Compton, R. G. Analytical determination of homocysteine: A review. Talanta 2003, 60(6), 1085–1095.
  • Arlt, K.; Brandt, S.; Kehr, J. Amino acid analysis in five pooled single plant cell samples using capillary electrophoresis coupled to laser-induced fluorescence detection. Journal of Chromatography A 2001, 926(2), 319–325.
  • Ummadi, M.; Weimer, B. C. Use of capillary electrophoresis and laser-induced fluorescence for attomole detection of amino acids. Journal of Chromatography A 2002, 964(1–2), 243253.
  • Zaia, D. A.M.; Ribas, K. C.L.; Zaia, C. T.B. V. Spectrophotometric determination of cysteine and/or carbocysteine in a mixture of amino acids, shampoo, and pharmaceutical products using p-benzoquinone. Talanta 1999, 50(5), 1003–1010.
  • Li, R. S.; Zhang, H. Z.; Ling, J.; Huang, C. Z.; Wang, J. Plasmonic platforms for colorimetric sensing of cysteine. Applied Spectroscopy Reviews 2016, 51(2), 129–147.
  • Diez, I.; Pusa, M.; Kulmala, S.; Jiang, H.; Walther, A.; Goldmann, A. S.; Muller, A. H.E.; Ikkala, O.; Ras, R. H.A. Color Tunability and Electrochemiluminescence of Silver Nanoclusters. Angewandte Chemie International Edition 2009, 48(12), 2122–2125.
  • Liu, J.-J.; Song, X.-R.; Wang, Y.-W.; Zheng, A.-X.; Chen, G.-N.; Yang, H.-H. Label-free and fluorescence turn-on aptasensor for protein detection via target-induced silver nanoclusters formation. Analytica Chimica Acta 2012, 749, 70–74.
  • Shang, L.; Dong, S.; Nienhaus, G. U. Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications. Nano Today 2011, 6(4), 401–418.
  • Yang, X.; Feng, Y.; Zhu, S.; Luo, Y.; Zhuo, Y.; Dou, Y. One-step synthesis and applications of fluorescent Cu nanoclusters stabilized by L-Cysteine in aqueous solution. Analytica Chimica Acta 2014, 847, 49–54.
  • Qing, Z.; He, X.; Qing, T.; Wang, K.; Shi, H.; He, D.; Zou, Z.; Yan, L.; Xu, F.; Ye, X.; Mao, Z. Poly(Thymine)-templated fluorescent copper nanoparticles for ultrasensitive label-free nuclease assay and its inhibitors screening. Analytical Chemistry 2013, 85, 12138–12143.
  • Chen, X.; Zhou, Y.; Peng, X.; Yoon, J. Fluorescent and colorimetric probes for detection of thiols. Chemical Society Reviews 2010, 39(6), 2120–2135.
  • Hu, R.; Liu, Y.-R.; Kong, R.-M.; Donovan, M. J.; Zhang, X.-B.; Tan, W.; Shen, G.-L.; Yu, R.-Q. Double-strand DNA-templated formation of copper nanoparticles as fluorescent probe for label free nuclease enzymedetection. Biosensors and Bioelectronics 2013, 42, 31–35.
  • Qing, Z.; He, X.; He, D.; Wang, K.; Xu, F.; Qing, T.; Yang, X. Poly(thymine)-templated selective formation of fluorescent copper nanoparticles. Angewandte Chemie International Edition 2013, 52(37), 9719–9722.
  • Wilcoxon, J. P.; Abrams, B. L. Synthesis, structure and properties of metal nanoclusters. Chemical Society Reviews 2006, 35(11), 1162–1194.
  • Zheng, J.; Nicovich, P. R.; Dickson, R. M. Highly Fluorescent Noble-Metal Quantum Dots. Annual Review of Physical Chemistry 2007, 58(1), 409–431.
  • Patel, S. A.; Richards, C. I.; Hsiang, J.-C.; Dickson, R. M. Water-soluble Ag nanoclusters exhibit strong two-photon-induced fluorescence. Journal of the American Chemical Society 2008, 130(35), 11602–11603.
  • Yuan, X.; Luo, Z.; Zhang, Q.; Zhang, X.; Zheng, Y.; Lee, J. Y.; Xie, J. Synthesis of highly fluorescent metal (Ag, Au, Pt, and Cu) nanoclusters by electrostatically induced reversible phase transfer. ACS Nano 2011, 5(11), 8800–8808.
  • Qian, H.; Zhu, M.; Wu, Z.; Jin, R. Quantum sized gold nanoclusters with atomic precision. Accounts of Chemical Research 2012, 45(9), 1470–1479.
  • Xie, J.; Zheng, Y.; Ying, J. Y. Protein-directed synthesis of highly fluorescent gold nanoclusters. Journal of the American Chemical Society 2009, 131(3), 888–889.
  • Richards, C. I.; Choi, S.; Hsiang, J.-C.; Antoku, Y.; Vosch, T.; Bongiorno, A.; Tzeng, Y.-L.; Dickson, R. M. Oligonucleotide-stabilized Ag nanocluster fluorophores. Journal of the American Chemical Society 2008, 130(15), 5038–5039.
  • Fernández-Ujados, M.; Trapiella-Alfonso, L.; Costa-Fernández, J., M; Pereiro, R.; Sanz-Medel, A. One-step aqueous synthesis of fluorescent copper nanoclusters by direct metal reduction. Nanotechnology 2013, 24 (49), 495601.
  • Bradwell, D. J.; Osswald, S.; Wei, W.; Barriga, S. A.; Ceder, G.; Sadoway, D. R. Recycling ZnTe, CdTe, and other compound semiconductors by ambipolar electrolysis. Journal of the American Chemical Society 2011, 133(49), 19971–19975.
  • Ma, S.-Y.; Yeh, Y.-C. One-step synthesis of water-soluble fluorescent copper nanoparticles for label-free detection of manganese ions. Analytical Methods 2015, 7(16), 6475–6478.
  • Zhou, S.; Li, Y.; Wang, F.; Wang, C. One step synthesis of silane-capped copper clusters as a sensitive optical probe and efficient catalyst for reversible color switching. RSC Advances 2016, 6(45), 38897–38905.
  • Miao, H.; Feng, Y.; Zhong, D.; Yang, X. Enhanced-fluorescence of europium–copper nanoclusters for cell imaging. Journal of Materials Science 2016, 51(15), 7229–7235.
  • Qiao, Y.; Xu, T.; Zhang, Y.; Zhang, C.; Shi, L.; Zhang, G.; Shuang, S.; Dong, C. Green synthesis of fluorescent copper nanoclusters for reversible pH-sensors. Sensors and Actuators B: Chemical 2015, 220, 1064–1069.
  • Wang, X.-P.; Yin, B.-C.; Ye, B.-C. A novel fluorescence probe of dsDNA-templated copper nanoclusters for quantitative detection of microRNAs. RSC Advances 2013, 3(23), 8633–8636.
  • Zhang, L.; Cai, Q.-Y.; Li, J.; Ge, J.; Wang, J.-Y.; Dong, Z.-Z.; Li, Z.-H. A label-free method for detecting biothiols based on poly(thymine)-templated copper nanoparticles. Biosensors and Bioelectronics 2015, 69, 77–82.
  • Hu, W.; Ning, Y.; Kong, J.; Zhang, X. Formation of copper nanoparticles on poly(thymine) through surface-initiated enzymatic polymerization and its application for DNA detection. Analyst 2015, 140(16), 5678–5684.
  • Dong, Z.-Z.; Zhang, L.; Qiao, M.; Ge, J.; Liu, A.-L.; Li, Z.-H. A label-free assay for T4 polynucleotide kinase/phosphatase activity and its inhibitors based on poly(thymine)-templated copper nanoparticles. Talanta 2016, 146, 253–258.
  • Ge, J.; Zhang, L.; Dong, Z.-Z.; Cai, Q.-Y.; Li, Z.-H. Sensitive and label-free T4 polynucleotide kinase/phosphatase detection based on poly(thymine)-templated copper nanoparticles coupled with nicking enzyme-assisted signal amplification. Analytical Methods 2016, 8(13), 2831–2836.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.