Publication Cover
Spectroscopy Letters
An International Journal for Rapid Communication
Volume 52, 2019 - Issue 7
230
Views
4
CrossRef citations to date
0
Altmetric
Articles

Optimized prediction of sugar content in ‘Snow’ pear using near-infrared diffuse reflectance spectroscopy combined with chemometrics

, &
Pages 376-388 | Received 02 Jun 2019, Accepted 22 Jul 2019, Published online: 22 Aug 2019

References

  • Jaeger, S. R.; Andani, Z.; Wakeling, I. N.; MacFie, H. J. H. Consumer Preferences for Fresh and Aged Apples: A Crosscultural Comparison. Food Quality & Preference 1998, 9(5), 355–366. DOI: 10.1016/S0950-3293(98)00031-7.
  • Thybo, A. K.; Kuhn, B. F.; Martens, H. Explaining Danish Children's Preferences for Apples Using Instrumental, Sensory and Demographic/Behavioural Data. Food Quality & Preference 2004, 15(1), 53–63. DOI: 10.1016/S0950-3293(03)00022-3.
  • Antonucci, F.; Pallottino, F.; Paglia, G.; Palma, A.; D’Aquino, S.; Menesatti, P. Non-Destructive Estimation of Mandarin Maturity Status through Portable VIS-NIR Spectrophotometer. Food and Bioprocess Technology 2011, 4(5), 809–813. DOI: 10.1007/s11947-010-0414-5.
  • Ning, J. M.; Sheng, M. G.; Yi, X. Y.; Wang, Y. J.; Hou, Z. W.; Zhang, Z. Z.; Gu, X. G. Rapid Evaluation of Soil Fertility in Tea Plantation Based on near-Infrared Spectroscopy. Spectroscopy Letters 2018, 51(9), 463–471. DOI: 10.1080/00387010.2018.1475398.
  • Peirs, A.; Scheerlinck, N.; Nicolai, B. M. Temperature Compensation for near Infrared Reflectance Measurement of Apple Fruit Soluble Solids Contents. Postharvest Biology & Technology 2003, 30(3), 233–248. DOI: 10.1016/S0925-5214(03)00118-2.
  • Guo, W. C.; Gu, J. S.; Liu, D. Y.; Shang, L. Peach Variety Identification Using near-Infrared Diffuse Reflectance Spectroscopy. Computers & Electronics in Agriculture 2016, 123, 297–303. DOI: 10.1016/j.compag.2016.03.005.
  • Liu, D. Y.; Li, Q. Q.; Li, W. Q.; Yang, B.; Guo, W. C. Discriminating Forchlorfenuron-Treated Kiwifruits Using Portable Spectrometer and Vis/NIR Diffuse Transmittance Spectroscopy Technology. Analytical Methods 2017, 9(28), 4207–4214. DOI: 10.1039/C7AY00832E.
  • Armstrong, P. R. Development and Evaluation of a Near-Infrared Instrument for Single-Seed Compositional Measurement of Wheat Kernels. Cereal Chemistry 2014, 91(1), 23–28. DOI: 10.1094/CCHEM-07-13-0132-R.
  • Semeniuk, I.; Krzysiak-Warzala, B.; Koren-Szwarc, B.; Grzywocz, A. Use of FT-NIR Spectroscopy for Determination of Free Fatty Acids in the Sunflowerseed Oil. Przemysl Chemiczny 2016, 95(11), 2359–2362.
  • Fernandes, H. L.; Raimundo, I. M.; Pasquini, C.; Rohwedder, J. J. R. Simultaneous Determination of Methanol and Ethanol in Gasoline Using NIR Spectroscopy: Effect of Gasoline Composition. Talanta 2008, 75(3), 804–810. DOI: 10.1016/j.talanta.2007.12.025.
  • Fu, X. H.; Hu, J. H.; Li, J. C.; Ding, Y. H.; Wang, Z. Z.; Xiao, W.; Zhang, Z. Q. Qualitative and Quantitative Detection of Poria Cocos by near Infrared Reflectance Spectroscopy. China Journal of Chinese Materia Medica 2015, 40(2), 280–286. DOI: 10.4268/cjcmm20150222.
  • Pornchaloempong, P.; Sirisomboon, P.; Pongkuan, S. Rapid Evaluation of the Salt Content of Canned Sardines in Brine Using near-Infrared Diffuse Reflectance Spectroscopy. Spectroscopy Letters 2016, 49(10), 613–618. DOI: 10.1080/00387010.2016.1236820.
  • Dong, X. G.; Li, Z. X.; Shen, Z. X.; Tang, X. Y. Nondestructive Egg Freshness Assessment from the Equatorial and Blunt Region Based on Visible Near Infrared Spectroscopy. Spectroscopy Letters 2018, 51(10), 540–546. DOI: 10.1080/00387010.2018.1525409.
  • Su, H. W.; Zhang, S. S.; Li, H. P.; Xie, P.; Sun, B. Z. Using Near-Infrared Reflectance Spectroscopyto Predict Physical Parameters of Beef. Spectroscopy Letters 2018, 51(4), 163–168. DOI: 10.1080/00387010.2018.1442355.
  • Samuel, D.; Park, B.; Sohn, M.; Wicker, L. Visible-Near-Infrared Spectroscopy to Predict Water-Holding Capacity in Normal and Pale Broiler Breast Meat. Poultry Science 2011, 90(4), 914–921. DOI: 10.3382/ps.2010-01116.
  • Özdemir, I. S.; Bureau, S.; Öztürk, B.; Seyhan, F.; Aksoy, H. Effect of Cultivar and Season on the Robustness of PLS Models for Soluble Solid Content Prediction in Apricots Using FT-NIRS. Journal of Food Science and Technology-Mysore 2019, 56(1), 330–339. DOI: 10.1007/s13197-018-3493-3.
  • Camps, C.; Gilli, C. Prediction of Local and Global Tomato Texture and Quality by FT-NIR Spectroscopy and Chemometric. European Journal of Horticultural Science 2017, 82(3), 126–333. DOI: 10.17660/eJHS.2017/82.3.2.
  • Li, J. B.; Zhao, C. J.; Huang, W. Q.; Zhang, C.; Peng, Y. K. A Combination Algorithm for Variable Selection to Determine Soluble Solid Content and Firmness of Pears. Analytical Methods 2014, 6(7), 2170–2180. DOI: 10.1039/C3AY42165A.
  • Fan, S. X.; Huang, W. Q.; Li, J. B.; Zhao, C. J.; Zhang, B. H. Characteristic Wavelengths Selection of Soluble Solids Content of Pear Based on NIR Spectral and LS-SVM. Spectroscopy and Spectral Analysis 2014, 34(8), 2089–2093.
  • Wang, J. H.; Wang, J.; Chen, Z.; Han, D. H. Development of Multi-Cultivar Models for Predicting the Soluble Solid Content and Firmness of European Pear (Pyrus communis L.) Using Portable vis-NIR Spectroscopy. Postharvest Biology and Technology 2017, 129, 143–151. DOI: 10.1016/j.postharvbio.2017.03.012.
  • Travers, S.; Bertelsen, M. G.; Petersen, K. K.; Kucheryavskiy, S. V. Predicting Pear (cv. Clara Frijs) Dry Matter and Soluble Solids Content with near Infrared Spectroscopy. LWT - Food Science and Technology 2014, 59(2), 1107–1113. DOI: 10.1016/j.lwt.2014.04.048.
  • Li, J. B.; Huang, W. Q.; Chen, L. P.; Fan, S. X.; Zhang, B. H.; Guo, Z. M.; Zhao, C. J. Variable Selection in Visible and near-Infrared Spectral Analysis for Noninvasive Determination of Soluble Solids Content of ‘Ya’ Pear. Food Analytical Methods 2014, 7(9), 1891–1902. DOI: 10.1007/s12161-014-9832-8.
  • Chio, J. H.; Chen, P. A.; Lee, B.; Yim, S. H.; Kim, M. S.; Bae, Y. S.; Lim, D. C.; Seo, H. J. Portable, Non-Destructive Tester Integrating VIS/NIR Reflectance Spectroscopy for the Detection of Sugar Content in Asian Pears. Scientia Horticulturae 2017, 220, 147–153. DOI: 10.1016/j.scienta.2017.03.050.
  • Mireei, S. A.; Mohtasebi, S. S.; Sadeghi, M. Comparison of Linear and Non-Linear Calibration Models for Non-Destructive Firmness Determining of ‘Mazafati’ Date Fruit by Near Infrared Spectroscopy. International Journal of Food Properties 2014, 17(6), 1199–1210. DOI: 10.1080/10942912.2012.678533.
  • Shao, Y. N.; Bao, Y. D.; He, Y. Visible/near-Infrared Spectra for Linear and Nonlinear Calibrations: A Case to Predict Soluble Solids Contents and pH Value in Peach. Food and Bioprocess Technology 2011, 4(8), 1376–1383. DOI: 10.1007/s11947-009-0227-6.
  • Kennard, R. W.; Stone, L. A. Computer Aided Design of Experiments. Technometrics 1969, 11(1), 137–148. DOI: 10.2307/1266770.
  • Norgaard, L.; Saudland, A.; Wagner, J.; Nielsen, J. P.; Munck, L.; Engelsen, S. B. Interval Partial Least-Squares Regression (iPLS): A Comparative Chemometric Study with an Example from Near-Infrared Spectroscopy. Applied Spectroscopy 2000, 54(3), 413–419. DOI: 10.1366/0003702001949500.
  • Li, H. D.; Liang, Y. Z.; Xu, Q. S.; Cao, D. S. Key Wavelengths Screening Using Competitive Adaptive Reweighted Sampling Method for Multivariate Calibration. Analytica Chimica Acta 2009, 648(1), 77–84. DOI: 10.1016/j.aca.2009.06.046.
  • Sjostrom, M.; Wold, S.; Lindberg, W.; Persson, J. A.; Martens, H. Multivariate Calibration Problem in Analytical Chemistry Solved by Partial Least Squares Models in Latent Variables. Analytica Chimica Acta 1983, 150(1), 61–70.
  • Chu, X. Practical Handbook for near Infrared Spectroscopy Analysis; China Machine Press: Beijing China, 2016; 127–129 pp.
  • Chu, X. Molecular Spectroscopy Analytical Technology Combined with Chemometrics and Applications; Chemical Industry Press: Beijing, China, 2011; 75–78 pp.
  • Li, H. D.; Liang, Y. Z.; Xu, Q. S. Support Vector Machines and Its Applications in Chemistry. Chemometrics & Intelligent Laboratory Systems 2009, 95(2), 188–198. DOI: 10.1016/j.chemolab.2008.10.007.
  • Brereton, R. G.; Lloyd, G. R. Support Vector Machines for Classification and Regression. Analyst 2010, 135(2), 230–267. DOI: 10.1039/b918972f.
  • Vapnik, V. The nature of statistical learning theory; Springer Verlag: Berlin Germany, 1995.
  • Savitzky, A.; Golay, M. J. E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry 1964, 36(8), 1627. DOI: 10.1021/ac60214a047.
  • Barnes, R. J.; Dhanoa, M. S.; Lister, S. J. Standard Normal Variate Transformation and De-Trending of near-Infrared Diffuse Reflectance Spectra. Applied Spectroscopy 1989, 43(5), 772–777. DOI: 10.1366/0003702894202201.
  • Helland, I. S.; Naes, T.; Isaksson, T. Related Versions of the Multiplicative Scatter Correction Method for Preprocessing Spectroscopic Data. Chemometrics & Intelligent Laboratory Systems 1995, 29(2), 233–241. DOI: 10.1016/0169-7439(95)80098-T.
  • Demetriadesshah, T. H.; Steven, M. D.; Clark, J. A. High Resolution Derivative Spectra in Remote Sensing. Remote Sensing of Environment 1990, 33(1), 55–64. DOI: 10.1016/0034-4257(90)90055-Q.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.