Publication Cover
Spectroscopy Letters
An International Journal for Rapid Communication
Volume 52, 2019 - Issue 10
203
Views
1
CrossRef citations to date
0
Altmetric
Articles

On the examination of raw, pasteurized, powdered, and adulterated milk samples and their multivariate classification: applications in food and forensic science

, , , ORCID Icon & ORCID Icon
Pages 583-598 | Received 09 Apr 2019, Accepted 14 Oct 2019, Published online: 31 Oct 2019

References

  • Sukhla, S. G. Dairy Chemistry; Aman Publishing House: Meerut, India, 2003.
  • Balabin, R. M.; Smirnov, S. V. Melamine Detection by Mid and near Infrared (MIR/NIR) Spectroscopy: A Quick and Sensitive Method for Dairy Products Analysis Including Liquid Milk, Infant Formula, and Milk Powder. Talanta 2011, 85, 562–568.
  • Santos, P. M.; Pereira-Filho, E. R.; Rodriguez-Saona, L. E. Rapid Detection and Quantification of Milk Adulteration Using Infrared Micro Spectroscopy and Chemometrics Analysis. Food Chemistry 2013, 138, 19–24.
  • Sharma, K.; Paradakar, M. The Melamine Adulteration Scandal. Food Security 2010, 2, 97–107.
  • Moore, J. C.; Spink, J.; Lipp, M. Development and Application of a Database of Food Ingredient Fraud and Economically Motivated Adulteration from 1980 to 2010. Journal of Food Science 2012, 77, R118–R126.
  • National Dairy Development Board. Milk production in India, national statistics report; NDDB: Anand, India, 2017.
  • Van Laer, E.; Tuyttens, F. A. M.; Ampe, B.; Sonck, B.; Moons, C. P. H.; Vandaele, L. Effect of Summer Conditions and Shade on the Production and Metabolism of Holstein Dairy Cows on Pasture Intemperate Climate. Animal 2015, 9, 1547–1558.
  • Kartheek, M.; Smith, A. A.; Muthu, A. K.; Manavalan, R. Determination of Adulterants in Food: A Review. Journal of Chemical and Pharmaceutical Research 2011, 3, 629–636.
  • Asensio, L.; Gonzalez, I.; Garcia, T.; Martın, R. Determination of Food Authenticity by Enzyme-Linked Immune Sorbent Assay (ELISA). Food Control 2008, 19, 1–8.
  • Mabrook, M. F.; Petty, M. C. A Novel Technique for the Detection of Added Water to Full Fat Milk Using Single Frequency Admittance Measurements. Sensors and Actuators B 2003, 96, 215–218.
  • Hsieh, C. L.; Hung, C. Y.; Kuo, C. Y. Quantization of Adulteration Ratio of Raw Cow Milk by Least Squares Support Vector Machines (LS–SVM) and Visible/near Infrared Spectroscopy. International Federation for Information Processing 2011, 363, 130–139.
  • Santos, P. M.; Wentzell, P. D.; Pereira–Filho, E. R. Scanner Digital Images Combined with Color Parameters: A Case Study to Detect Adulterations in Liquid Cow’s Milk. Food Analytical Methods 2012, 5, 89–95.
  • Sadat, A.; Mustajab, P.; Khan, I. A. Determining the Adulteration of Natural Milk with Synthetic Milk Using ac Conductance Measurement. Journal of Food Engineering 2006, 77, 472–477.
  • MacMahon, S.; Begley, T. H.; Diachenko, G. W.; Stromgren, S. A. A Liquid Chromatography-Tandem Mass Spectrometry Method for the Detection of Economically Motivated Adulteration in Protein-Containing Foods. Journal of Chromatography A 2012, 13, 101–107.
  • Recio, I.; Garcı́a-Risco, M. R.; López-Fandiño, R.; Olano, A.; Ramos, M. Detection of Rennet Whey Solids in UHT Milk by Capillary Electrophoresis. International Dairy Journal 2000, 10, 333–338.
  • Sun, F.; Ma, W.; Xu, L.; Zhu, Y.; Liu, L.; Peng, C.; Wang, L.; Kuang, H.; Xu, C. Analytical Methods and Recent Developments in the Detection of Melamine. TrAC Trends in Analytical Chemistry 2010, 29, 1239–1249.
  • Jawaid, S.; Talpur, F. N.; Sherazi, S. T. H.; Nizamani, S. M.; Khaskheli, A. A. Rapid Detection of Melamine Adulteration in Dairy Milk by SB–ATR–Fourier Transform Infrared Spectroscopy. Food Chemistry 2013, 141, 3066–3071.
  • Dobson, R. L. M.; Motlagh, S.; Quijano, M.; Cambron, R. T.; Baker, T. R.; Pullen, A. M.; Regg, B. T.; Bigalow-Kern, A. S.; Vennard, T.; Fix, A.; et al. Identification and Characterization of Toxicity of Contaminants in Pet Food Leading to an Outbreak of Renal Toxicity in Cats and Dogs. Toxicological Sciences: An Official Journal of the Society of Toxicology 2008, 106, 251–262.
  • Tyan, Y. C.; Yang, M. H.; Jong, S. B.; Wang, C. K.; Shiea, J. Melamine Contamination. Analytical and Bioanalytical Chemistry 2009, 395, 729–735.
  • Brown, C. A.; Jeong, K. S.; Poppenga, R. H.; Puschner, B.; Miller, D. M.; Ellis, A. E.; Kang, K. I.; Sum, S.; Cistola, A. M.; Brown, S. A. Outbreaks of Renal Failure Associated with Melamine and Cyanuric Acid in Dogs and Cats in 2004 and 2007. Journal of Veterinary Diagnostic Investigation 2007, 19, 525–531.
  • Burns, K. Recall Shines Spotlight on Pet Foods. Journal of the American Veterinary Medical Association 2007, 230, 1285–1288.
  • Xu, X. M.; Ren, Y. P.; Zhu, Y.; Cai, Z. X.; Han, J. L.; Huang, B. F.; Zhu, Y. Direct Determination of Melamine in Dairy Products by Gas Chromatography/Mass Spectrometry with Coupled Column Separation. Analytica Chimica Acta 2009, 650, 39–43.
  • Mishra, G. K.; Mishra, R. K.; Bhand, S. Flow Injection Analysis Biosensor for Urea Analysis in Adulterated Milk Using Enzyme Thermistor. Biosensors and Bioelectronics 2010, 26, 1560–1564.
  • Naik, P. P.; Mishra, G. K.; Danielsson, B.; Bhand, S. Android Integrated Urea Biosensor for Public Health Awareness. Sensing and Bio-Sensing Research 2015, 3, 12–17.
  • Trivedi, U. B.; Lakshminarayana, D.; Kothari, I. L.; Patel, N. G.; Kapse, H. N.; Makhija, K. K.; Patel, P. B.; Panchal, C. J. Potentiometric Biosensor for Urea Determination in Milk. Sensors and Actuators B: Chemical 2009, 140, 260–266.
  • Lin, M. A Review of Traditional and Novel Detection Techniques for Melamine and Its Analogues in Foods and Animal Feed. Frontiers of Chemical Engineering in China 2009, 3, 427–435.
  • Rodriguez–Saona, L. E.; Allendorf, M. E. Use of FTIR for Rapid Authentication and Detection of Adulteration of Food. Annual Review of Food Science and Technology 2011, 2, 467–483.
  • Etzion, Y.; Linker, R.; Cogan, U.; Shmulevich, I. Shmulevich, I. Determination of Protein Concentration in Raw Milk by Mid-Infrared Fourier Transform Infrared/Attenuated Total Reflectance Spectroscopy. Journal of Dairy Science 2004, 87, 2779–2788.
  • Kawasaki, M.; Kawamura, S.; Tsukahara, M.; Morita, S.; Komiya, M.; Natsuga, M. Near-Infrared Spectroscopic Sensing System for on-Line Milk Quality Assessment in a Milking Robot. Computers and Electronics in Agriculture 2008, 63, 22–27.
  • Jaiswal, P.; Jha, S. N.; Kaur, J.; Borah, A. Detection and Quantification of Anionic Detergent (Lissapol) in Milk Using Attenuated Total Internal Reflectance-Fourier Transform Infrared Spectroscopy. Food Chemistry 2017, 221, 815–821.
  • Valenti, B.; Martin, B.; Andueza, D.; Leroux, C.; Labonne, C.; Lahalle, F.; Larroque, H.; Brunschwig, P.; Lecomte, C.; Brochard, M.; et al. Infrared Spectroscopic Methods for the Discrimination of Cow’s Milk according to the Feeding System, Cow Breed and Altitude of the Dairy Farm. International Dairy Journal 2013, 32, 26–32.
  • He, B.; Liu, R.; Yang, R.; Xu, K. Adulteration Detection in Milk Using Infrared Spectroscopy Combined with Two–Dimensional Correlation Analysis. Proceedings of SPIE 2010, 7572, 9.
  • Kasemsumran, S.; Thanapase, W.; Kiatsoonthon, A. Feasibility of near Infrared Spectroscopy to Detect and to Quantify Adulterants in Cow Milk. Analytical Sciences 2007, 23, 907–910.
  • Jha, S. N.; Matsuoka, T. Detection of Adulterants in Milk Using near Infrared Spectroscopy. Journal of Food Science and Technology 2004, 43, 313–316.
  • Hop, E.; Luinge, H. J.; Van Hemert, H. Quantitative Analysis of Water in Milk by FT–IR Spectrometry. Applied Spectroscopy 1993, 47, 1180–1182.
  • Smalldon, K. W.; Moffat, A. C. The Calculation of Discriminating Power for a Series of Correlated Attributes. Journal of the Forensic Science Society 1973, 13, 291–295.
  • Brereton, R. G. Chemometrics: Data Analysis for the Laboratory and Chemical Plant; John Wiley and Sons: Chichester, UK, 2003.
  • Kumar, R.; Sharma, V. Chemometrics in Forensic Science. TrAC, Trends in Analytical Chemistry 2018, 105, 191–201.
  • Gemperline, P. J. Practical Guide to Chemometrics. 2nd ed.; CRC Press: Boca Raton, FL, 2006.
  • Kacuráková, M.; Wilson, R. H. Developments in Mid-Infrared FT-IR Spectroscopy of Selected Carbohydrates. Carbohydrate Polymers 2001, 44, 291–303.
  • Kaiser, H. F. A Second-Generation Little Jiffy. Psychometrika 1970, 25, 401–415.
  • Bottero, M. T.; Civera, T.; Anastasio, A.; Turi, R. M.; Rosati, S. Identification of Cow’s Milk in “Buffalo” Cheese by Duplex Polymerase Chain Reaction. Journal of Food Protection 2002, 65, 362–366.
  • Molkentin, T.; Giesemann, A. Differentiation of Organically and Conventionally Produced Milk by Stable Isotope and Fatty Acid Analysis. Analytical and Bioanalytical Chemistry 2007, 388, 297–305.
  • Pappas, C. S.; Tarantilis, P. A.; Moschopoulou, E.; Moatsou, G.; Kandarakis, I.; Polissiou, M. G. Identification and Differentiation of Goat and Sheep Milk Based on Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) Using Cluster Analysis. Food Chemistry 2008, 106, 1271–1277.
  • Aulrich, K.; Molkentin, J. Potential of near Infrared Spectroscopy for Differentiation of Organically and Conventionally Produced Milk. Agriculture and Forestry Research 2009, 4, 301–308.
  • Ullah, R.; Khan, S.; Ali, H.; Bilal, M.; Saleem, M.; Mahmood, A.; Ahmed, M. Raman-Spectroscopy-Based Differentiation, between Cow and Buffalo Milk. Journal of Raman Spectroscopy 2017, 48, 692–696. DOI: 10.1002/jrs.5103.
  • Mabood, F.; Jabeen, F.; Ahmed, M.; Hussain, J.; Mashaykhi, S.; Rubaiey, Z.; Farooq, S.; Boque, R.; Ali, L.; Hussain, Z.; et al. Development of New NIR-Spectroscopy Method Combined with Multivariate Analysis for Detection of Adulteration in Camel Milk with Goat Milk. Food Chemistry 2017, 221, 746–750.
  • Tenori, L.; Santucci, C.; Meoni, G.; Morrocchi, V.; Matteucci, G.; Luchinat, C. NMR Metabolomic Fingerprinting Distinguishes Milk from Different Farms. Food Research International 2018, 113, 131–139.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.