Publication Cover
Spectroscopy Letters
An International Journal for Rapid Communication
Volume 53, 2020 - Issue 6
239
Views
14
CrossRef citations to date
0
Altmetric
Articles

Detection of chlorophyll content in growth potato based on spectral variable analysis

ORCID Icon, , , , , & show all
Pages 476-488 | Received 30 Apr 2020, Accepted 19 May 2020, Published online: 16 Jul 2020

References

  • Zhao, B.; Duan, A.; Ata-Ul-Karim, S. T.; Liu, Z.; Chen, Z.; Gong, Z.; Zhang, J.; Xiao, J.; Liu, Z.; Qin, A.; Ning, D. Exploring New Spectral Bands and Vegetation Indices for Estimating Nitrogen Nutrition Index of Summer Maize. Eur. J. Agron. 2018, 93, 113–125. DOI: 10.1016/j.eja.2017.12.006.
  • Weber, V. S.; Araus, J. L.; Cairns, J. E.; Sanchez, C.; Melchinger, A. E.; Orsini, E. Prediction of Grain Yield Using Reflectance Spectra of Canopy and Leaves in Maize Plants Grown under Different Water Regimes. Field Crops Res. 2012, 128, 82–90. DOI: 10.1016/j.fcr.2011.12.016.
  • Dong-Chil, C.; Ji-Hong, C.; Yong-Ik, J.; Ju-Sung, I.; Chung-Gi, C.; Su-Jeong, K.; Hong-Seob, Y. Mulch and Planting Depth Influence Potato Canopy Development, Underground Morphology, and Tuber Yield. Field Crops Res. 2016, 197, 117–124.
  • Shillito, R. M.; Timlin, D. J.; Fleisher, D.; Reddy, V. R.; Quebedeaux, B. Yield Response of Potato to Spatially Patterned Nitrogen Application. Agric. Ecosyst. Env. 2009, 129, 107–116. DOI: 10.1016/j.agee.2008.07.010.
  • Zelalem, A.; Tekalign, T.; Nigussie, D. Response of Potato (Solanum tuberosum L.) to Different Rates of Nitrogen and Phosphorus Fertilization on Vertisols at Debre Berhan, in the Central Highlands of Ethiopia. Afr. J. Plant Sci. 2009, 3, 16–24.
  • Zotarelli, L.; Rens, L. R.; Cantliffe, D. J.; Stoffella, P. J.; Gergela, D.; Burhans, D. Rate and Timing of Nitrogen Fertilizer Application on Potato ‘FL1867’. Part I: Plant Nitrogen Uptake and Soil Nitrogen Availability. Field Crops Res. 2015, 183, 246–256. DOI: 10.1016/j.fcr.2015.08.007.
  • Alva, A.; Fan, M.; Qing, C.; Rosen, C.; Ren, H. Improving Nutrient-Use Efficiency in Chinese Potato Production: Experiences from the United States. J. Crop Improve. 2011, 25, 46–85. DOI: 10.1080/15427528.2011.538465.
  • Nigon, T. J.; Mulla, D. J.; Rosen, C. J.; Cohen, Y.; Alchanatis, V.; Rud, R. Evaluation of the Nitrogen Sufficiency Index for Use with High Resolution, Broadband Aerial Imagery in a Commercial Potato Field. Precision Agric. 2014, 15, 202–226. DOI: 10.1007/s11119-013-9333-6.
  • Ning, L.; Li, W.; Longsheng, C. Spectral Characteristics Analysis and Water Content Detection of Potato Plants Leaves. Int. Fed. Automatic Contr. 2018, 51, 541–546.
  • Peng, W.; Jia, H.; Fang, N. Estimating Leaf Nitrogen Concentration considering Unsynchronized Maize Growth Stages with Canopy Hyperspectral Technique. Ecol. Indic. 2019, 107, 1–16.
  • Hartmann, T. E.; Yue, S.; Schulz, R.; Chen, X.; Zhang, F.; Müller, T. Nitrogen Dynamics, Apparent Mineralization and Balance Calculations in a Maize – Wheat Double Cropping System of the North China Plain. Field Crops Res. 2014, 160, 22–30. DOI: 10.1016/j.fcr.2014.02.014.
  • Wen, P.-F.; Wang, R.; Shi, Z.-J.; Ning, F.; Wang, S.-L.; Zhang, Y.-J.; Zhang, Y.-H.; Wang, Q.; Li, J. Effects of N Application Rate on N Remobilization and Accumulation in Maize (Zea mays L.) and Estimating of Vegetative N Remobilization Using Hyperspectral Measurements. Comp Electronic Agric. 2018, 152, 166–181. DOI: 10.1016/j.compag.2018.07.009.
  • Cartelat, A.; Cerovic, Z. G.; Goulas, Y.; Meyer, S.; Lelarge, C.; Prioul, J.-L.; Barbottin, A.; Jeuffroy, M.-H.; Gate, P.; Agati, G.; et al. Optically Assessed Contents of Leaf Polyphenolics and Chlorophyll as Indicators of Nitrogen Deficiency in Wheat. Field Crop Res. 2005, 91, 35–49. DOI: 10.1016/j.fcr.2004.05.002.
  • Sun, H.; Zheng, T.; Liu, N. Vertical Distribution of Chlorophyll in Potato Plants Based on Hyperspectral Imaging. Transact. Chin. Soc. Agric. Eng. 2018, 34(1), 149–156.
  • Yu, K.; Lenz-Wiedemann, V.; Chen, X.; Bareth, G. Estimating Leaf Chlorophyll of Barley at Different Growth Stages Using Spectral Indices to Reduce Soil Background and Canopy Structure Effects. ISPRS J. Photogr. Remote Sens. 2014, 97, 58–77.
  • Li, H.; Zhao, C.; Yang, G.; Feng, H. Variations in Crop Variables within Wheat Canopies and Responses of Canopy Spectral Characteristics and Derived Vegetation Indices to Different Vertical Leaf Layers and Spikes. Remote Sens. Envi. 2015, 169, 358–374. DOI: 10.1016/j.rse.2015.08.021.
  • de Almeida, V. E.; Gomes, A. A.; Fernandes, D. D. S.; Goicoechea, H. C.; Galvão, R. K. H.; Araújo, M. C. U. Vis-NIR Spectrometric Determination of Brix and Sucrose in Sugar Production Samples Using Kernel Partial Least Squares with Interval Selection Based on the Successive Projections Algorithm. Talanta 2018, 181, 38–43.
  • Karla, M.; Thiago, N. Selection of Robust Variables for Transfer of Classification Models Employing the Successive Projections Algorithm. Anal. Chim. Acta 2017, 984, 76–85.
  • Sófacles, S.; Roberto, G.; Mário, A.; Edvan, S. A Modification of the Successive Projections Algorithm for Spectral Variable Selection in the Presence of Unknown Interferents. Anal. Chim. Acta 2011, 689, 22–28.
  • Qu, F.; Ren, D.; Wang, J.; Zhang, Z.; Lu, N.; Meng, L. An Ensemble Successive Projection Algorithm for Liquor Detection Using near Infrared Sensor. Sensors 2016, 16, 89–97. DOI: 10.3390/s16010089.
  • Gabriela, K.; Florencia, R.; David, D. Determination of Fat Content in Chicken Hamburgers Using NIR Spectroscopy and the Successive Projections Algorithm for Interval Selection in PLS Regression (iSPA-PLS). Spectrochim. Acta, Part A. 2018, 189, 300–306.
  • Tian, X.; Fan, S.; Li, J.; Xia, Y.; Huang, W.; Zhao, C. Comparison and Optimization of Models for SSC on-Line Determination of Intact Apple Using Efficient Spectrum Optimization and Variable Selection Algorithm. Infrared Phys. Technol. 2019, 102, 102979. DOI: 10.1016/j.infrared.2019.102979.
  • Li, D.; Liang, Y.; Xu, Q.; Cao, D. Model Population Analysis and Its Applications in Chemical and Biological Modeling. TrAC Trends Anal. Chem. 2012, 38, 154–162. DOI: 10.1016/j.trac.2011.11.007.
  • Roosjen, P. P. J.; Brede, B.; Suomalainen, J. M.; Bartholomeus, H. M.; Kooistra, L.; Clevers, J. G. P. W. Improved Estimation of Leaf Area Index and Leaf Chlorophyll Content of a Potato Crop Using Multi-Angle Spectral Data – Potential of Unmanned Aerial Vehicle Imagery. Int. J. Appl. Earth Obs. Geoinf. 2018, 66, 14–26. DOI: 10.1016/j.jag.2017.10.012.
  • Cai, W.; Li, Y.; Shao, X. A Variable Selection Method Based on Uninformative Variable Elimination for Multivariate Calibration of near-Infrared Spectra. Chemometr. Intel. Lab. 2008, 90, 188–194. DOI: 10.1016/j.chemolab.2007.10.001.
  • Xia, Z.; Zhang, C.; Weng, H.; Nie, P.; He, Y. Sensitive Wavelengths Selection in Identification of, Ophiopogon japonicus, Based on near-Infrared Hyperspectral Imaging Technology. Int. J. Anal. Chem. 2017, 2017, 1–11. DOI: 10.1155/2017/6018769.
  • Yun, Y.-H.; Li, H.-D.; Wood, L. R. E.; Fan, W.; Wang, J.-J.; Cao, D.-S.; Xu, Q.-S.; Liang, Y.-Z. An Efficient Method of Wavelength Interval Selection Based on Random Frog for Multivariate Spectral Calibration. Spectrochim Acta A Mol Biomol Spectrosc 2013, 111, 31–36. DOI: 10.1016/j.saa.2013.03.083.
  • Li, D.; Xu, S.; Liang, Z. libPLS: An Integrated Library for Partial Least Squares Regression and Linear Discriminant Analysis. Chemometr. Intel. Lab. Syst. 2018, 176, 34–43. DOI: 10.1016/j.chemolab.2018.03.003.
  • Jiang, J.-H.; Berry, R. J., Siesler, H. W, Ozaki, Y. Wavelength Interval Selection in Multicomponent Spectral Analysis by Moving Window Partial Least-Squares Regression with Applications to Mid-Infrared and near-Infrared Spectroscopic Data. Anal. Chem. 2002, 74, 3555–3565. DOI: 10.1021/ac011177u.
  • Yun, Y.-H.; Wang, W.-T.; Tan, M.-L.; Liang, Y.-Z.; Li, H.-D.; Cao, D.-S.; Lu, H.-M.; Xu, Q.-S. A Strategy That Iteratively Retains Informative Variables for Selecting Optimal Variable Subset in Multivariate Calibration. Anal. Chim. Acta. 2014, 807, 36–43. DOI: 10.1016/j.aca.2013.11.032.
  • Yao, X.; Yang, W.; Li, M.; Zhou, P.; Chen, Y.; Hao, Z.; Liu, Z. Prediction of Total Nitrogen in Soil Based on Random Frog Leaping Wavelet Neural Network. IFAC-PapersOnLine 2018, 51, 660–665. DOI: 10.1016/j.ifacol.2018.08.121.
  • Hong, S.; Ning, L.; Li, W. Visualization of Water Content Distribution in Potato Leaves Based on Hyperspectral Image. Spectrosc. Spectral Anal. 2019, 39, 910–916.
  • Clevers, J.; Kooistra, L.; Brande, M. Using Sentinel-2 Data for Retrieving Lai and Leaf and Canopy Chlorophyll Content of a Potato Crop. Remote Sens. 2017, 9, 405–420. DOI: 10.3390/rs9050405.
  • Zhou, Z.; Plauborg, F.; Thomsen, A. G.; Andersen, M. N. A RVI/LAI-Reference Curve to Detect N Stress and Guide N Fertigation Using Combined Information from Spectral Reflectance and Leaf Area Measurements in Potato. Eur. J. Agron. 2017, 87, 1–7. DOI: 10.1016/j.eja.2017.04.002.
  • Cohen, Y.; Alchanatis, V.; Zusman, Y.; Dar, Z.; Bonfil, D. J.; Karnieli, A.; Zilberman, A.; Moulin, A.; Ostrovsky, V.; Levi, A.; et al. Leaf Nitrogen Estimation in Potato Based on Spectral Data and on Simulated Bands of the Satellite. Precision Agric. 2010, 11, 520–537. DOI: 10.1007/s11119-009-9147-8.
  • van Evert, F. K.; Booij, R.; Jukema, J. N.; ten Berge, H. F. M.; Uenk, D.; Meurs, E. J. J. (Bert).; van Geel, W. C. A.; Wijnholds, K. H.; Slabbekoorn, J. J. (Hanja). Using Crop Reflectance to Determine Sidedress N Rate in Potato Saves N and Maintains Yield. Eur. J. Agron. 2012, 43, 58–67. DOI: 10.1016/j.eja.2012.05.005.
  • Nayek, S.; Choudhury, H. Spectrophotometric Analysis of Chlorophylls and Carotenoids from Commonly Grown Fern Species by Using Various Extracting Solvents. Res. J. Chem. Sci. 2014, 4, 63–69.
  • Wang, Y.; Li, G.; Zhang, L.; Fan, J. Retrieval of Leaf Water Content of Winter Wheat from Canopy Spectral Reflectance Data Using a Position Index (λ\r, Min\r,) Derived from the 1200 nm Absorption Band. Remote Sens. Lett. 2011, 2, 31–40. DOI: 10.1080/01431161.2010.490797.
  • Dong, L.; Xue, W.; Hengbiao, Z. Estimation of Area- and Mass-Based Leaf Nitrogen Contents of Wheat and Rice Crops from Water-Removed Spectra Using Continuous Wavelet Analysis. Plant Meth. 2018, 14, 76–96.
  • Fearn, T.; Riccioli, C.; Garrido-Varo, A.; Guerrero-Ginel, J. E. On the Geometry of SNV and MSC. Chemometr. Intel. Lab. Syst. 2009, 96, 22–26. DOI: 10.1016/j.chemolab.2008.11.006.
  • Haitao, S.; Peiqiang, Y. Comparison of Grating-Based near-Infrared (NIR) and Fourier Transform Mid-Infrared (ATR-FT/MIR) Spectroscopy Based on Spectral Preprocessing and Wavelength Selection for the Determination of Crude Protein and Moisture Content in Wheat. Food Contr. 2017, 82, 57–65.
  • Galvão, R. K. H.; Araujo, M. C. U.; José, G. E.; Pontes, M. J. C.; Silva, E. C.; Saldanha, T. C. B. A Method for Calibration and Validation Subset Partitioning. Talanta 2005, 67, 736–740. DOI: 10.1016/j.talanta.2005.03.025.
  • Han, T.; Linna, Z.; Ming, L.; Yue, W.; Dinggao, S.; Jun, L.; Chengmin, W. Weighted SPXY Method for Calibration Set Selection for Composition Analysis Based on near-Infrared Spectroscopy. Infrared Phys. Technol. 2018, 95, 88–92. DOI: 10.1016/j.infrared.2018.10.030.
  • Araújo, M. C. U.; Saldanha, T. C. B.; Galvão, R. K. H.; Yoneyama, T.; Chame, H. C.; Visani, V. The Successive Projections Algorithm for Variable Selection in Spectroscopic Multicomponent Analysis. Chemometr. Intel. Lab. Syst. 2001, 57, 65–73. DOI: 10.1016/S0169-7439(01)00119-8.
  • Feng, H.; Mengran, Z.; Pengcheng, Y. Selection of Characteristic Wavelengths Using SPA for Laser Induced Fluorescence Spectroscopy of Mine Water Inrush. Spectrochim. Acta, Part A. 2019, 219, 367–374.
  • Geladi, P.; Kowalski, R. Partial Least-Squares Regression: A Tutorial. Anal. Chim. Acta 1986, 185, 1–17. DOI: 10.1016/0003-2670(86)80028-9.
  • Fu, Y.; Yang, G.; Wang, J.; Song, X.; Feng, H. Winter Wheat Biomass Estimation Based on Spectral Indices, Band Depth Analysis and Partial Least Squares Regression Using Hyperspectral Measurements. Comp Electronic Agric. 2014, 100, 51–59. DOI: 10.1016/j.compag.2013.10.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.