Publication Cover
Spectroscopy Letters
An International Journal for Rapid Communication
Volume 54, 2021 - Issue 5
164
Views
7
CrossRef citations to date
0
Altmetric
Articles

Identification of aflatoxin B1 in peanut using near-infrared spectroscopy combined with naive Bayes classifier

, , , &
Pages 340-351 | Received 15 Dec 2020, Accepted 22 Mar 2021, Published online: 02 Jun 2021

References

  • Settaluri, V.S.; Kandala, C.V.K.; Puppala, N.; Sundaram, J. Peanuts and Their Nutritional Aspects—A Review. Food and Nutrition Sciences 2012, 03(12), 1644–1650. DOI: 10.4236/fns.2012.312215.
  • Toomer, O.T. Nutritional Chemistry of the Peanut (Arachis hypogaea). Critical Reviews in Food Science and Nutrition 2018, 58(17), 3042–3053. DOI: 10.1080/10408398.2017.1339015.
  • Smith, M. I.; Yatsunenko, T.; Manary, M. J.; Trehan, I.; Mkakosya, R.; Cheng, J.; Kau, A. L.; Rich, S. S.; Concannon, P.; Mychaleckyj, J. C.; et al. Gut Microbiomes of Malawian Twin Pairs Discordant for Kwashiorkor. Science 2013, 339(6119), 548–554. DOI: 10.1126/science.1229000.
  • Yao, Y.Y.; Qiao, Y.L. Advance in Study on Functional Compositions and Nutritive Value of Peanut. China Oils and Fats 2005, 30, 31–33.
  • Rostami, R.; Naddafi, K.; Aghamohamadi, A. Survey of Peanut Fungal Contamination and Its Relationship with Ambient Conditions in the Bazar of Zanjan. Iranian Journal of Environmental Health Science & Engineering 2010, 6, 295–300.
  • Liu, P.; Jiang, X.S.; Shen, F.; Wu, Q.F.; Zhou, H.P. Rapid Detection of Toxigenic Fungal Contamination in Peanuts with Near Infrared Spectroscopy Technology. Spectroscopy and Spectral Analysis 2017, 37, 1397–1402.
  • Kolosova, A.Y.; Shim, W.B.; Yang, Z.Y.; Eremin, S.A.; Chung, D.H. Direct Competitive ELISA Based on a Monoclonal Antibody for Detection of Aflatoxin B1. Stabilization of ELISA Kit Components and Application to Grain Samples. Analytical & Bioanalytical Chemistry 2006, 384, 286–294. DOI: 10.1007/s00216-005-0103-9.
  • Afsah-Hejri, L.; Jinap, S.; Arzandeh, S.; Mirhosseini, H. Optimization of HPLC Conditions for Quantitative Analysis of Aflatoxins in Contaminated Peanut. Food Control. 2011, 22(3-4), 381–388. DOI: 10.1016/j.foodcont.2010.09.007.
  • Danesh, N.M.; Bostan, H.B.; Abnous, K.; Ramezani, M.; Youssefi, K.; Taghdisi, S.M.; Karimi, G. Ultrasensitive Detection of Aflatoxin B1 and Its Major Metabolite Aflatoxin M1 Using Aptasensors: A Review. Trac Trends in Analytical Chemistry 2018, 99, 117–128. DOI: 10.1016/j.trac.2017.12.009.
  • Qiao, L.; Tang, X.Y.; Dong, J. A Feasibility Quantification Study of Total Volatile Basic Nitrogen (TVB-N) Content in Duck Meat For Freshness Evaluation. Food Chemistry 2017, 237, 1179–1185. DOI: 10.1016/j.foodchem.2017.06.031.
  • Cen, H.Y.; He, Y. Theory and Application of Near Infrared Reflectance Spectroscopy in Determination of Food Quality. Trends in Food Science & Technology 2007, 18(2), 72–83. DOI: 10.1016/j.tifs.2006.09.003.
  • Shen, F.; Wu, Q.F.; Shao, X.L.; Zhang, Q. Non-destructive and Rapid Evaluation of Aflatoxins in Brown Rice by Using Near-Infrared and Mid-Infrared Spectroscopic Techniques. Journal of Food Science and Technology 2018, 55, 1175–1184. DOI: 10.1007/s13197-018-3033-1.
  • Sirisomboon, C.D.; Putthang, R.; Sirisomboon, P. Application of Near Infrared Spectroscopy to Detect Aflatoxigenic Fungal Contamination In Rice. Food Control. 2013, 33(1), 207–214. DOI: 10.1016/j.foodcont.2013.02.034.
  • Zhang, Q.; Jia, F.G.; Liu, C.H.; Sun, J.K.; Zheng, X.Z. Rapid Detection of Aflatoxin B-1 in Paddy Rice as Analytical Quality Assessment by Near Infrared Spectroscopy. International Journal of Agricultural and Biological 2014, 7, 127–133.
  • Fernandez-Ibanez, V.; Soldado, A.; Martinez-Fernandez, A.; De La Roza-Delgado, B. Application of Near Infrared Spectroscopy for Rapid Detection of Aflatoxin B1 in Maize and Barley as Analytical Quality Assessment. Food Chemistry 2009, 113(2), 629–634. DOI: 10.1016/j.foodchem.2008.07.049.
  • Phan-Thien, K.Y.; Golic, M.; Wright, G.C.; Lee, N.A. Feasibility of Estimating Peanut Essential Minerals by Near Infrared Reflectance Spectroscopy. Sensing and Instrumentation for Food Quality and Safety 2011, 5(1), 43–49. DOI: 10.1007/s11694-011-9110-z.
  • Tillman, B.L.; Gorbet, D.W.; Person, G. Predicting Oleic and Linoleic Acid Content of Single Peanut Seeds Using Near-Infrared Reflectance Spectroscopy. Crop Science 2006, 46(5), 2121–2126. DOI: 10.2135/cropsci2006.01.0031.
  • Sundaram, J.; Kandala, C.V.; Holser, R.A.; Butts, C.L.; Windham, W.R. Determination of In-Shell Peanut Oil and Fatty Acid Composition Using Near-Infrared Reflectance Spectroscopy. Journal of the American Oil Chemists' Society 2010, 87(10), 1103–1114. DOI: 10.1007/s11746-010-1589-7.
  • Sundaram, J.; Kandala, C.V.; Butts, C.L.; Chen, C.Y.; Sobolev, V. Nondestructive NIR Reflectance Spectroscopic Method for Rapid Fatty Acid Analysis of Peanut Seeds. Peanut Science 2011, 38(2), 85–92. DOI: 10.3146/PS10-3.1.
  • Shen, F.; Wu, Q.F.; Liu, P.; Jiang, X.S.; Fang, Y.; Cao, C.J. Detection of Aspergillus spp. Contamination Levels in Peanuts by Near Infrared Spectroscopy and Electronic Nose. Food Control. 2018, 93, 1–8. DOI: 10.1016/j.foodcont.2018.05.039.
  • Yan, C.; Jiang, X.S.; Shen, F.; He, X.M.; Fang, Y.; Liu, Q. Visible/Near-Infrared spectroscopy Combined with Machine Vision for Dynamic Detection of Aflatoxin B1 Contamination in Peanut. Spectroscopy and Spectral Analysis 2020, 40, 3865–3870.
  • Tao, F.F.; Yao, H.B.; Hruska, Z.; Liu, Y.L.; Rajasekaran, K.; Bhatnagar, D. Use of Visible-Near-Infrared (Vis-NIR) Spectroscopy to Detect Aflatoxin B-1 on Peanut Kernels. Applied Spectroscopy 2019, 73, 415–423. DOI: 10.1177/0003702819829725.
  • Lim, J.; Kim, G.; Mo, C.; Oh, K.; Kim, G.; Ham, H.; Kim, S.; Kim, M.S. Application of Near Infrared Reflectance Spectroscopy for Rapid and Non-Destructive Discrimination of Hulled Barley, Naked Barley, and Wheat Contaminated with Fusarium. Sensors 2018, 18(2), 113. DOI: 10.3390/s18010113.
  • Rinnan, A.; van den Berg, F.; Engelsen, S.B. Review of the Most Common Preprocessing Techniques for Near-Infrared Spectra. Trac Trends in Analytical Chemistry 2009, 28(10), 1201–1222. DOI: 10.1016/j.trac.2009.07.007.
  • Lu, B.; Liu, N.H.; Li, H.L.; Yang, K.F.; Hu, C.; Wang, X.F.; Li, Z.X.; Shen, Z.X.; Tang, X.Y. Quantitative Determination and Characteristic Wavelength Selection of Available Nitrogen in Coco-Peat by NIR Spectroscopy. Soil and Tillage Research 2019, 191, 266–274. DOI: 10.1016/j.still.2019.04.015.
  • Araujo, M.C.U.; Saldanha, T.C.B.; Galvao, R.K.H.; Yoneyama, T.; Chame, H.C.; Visani, V. The Successive Projections Algorithm for Variable Selection in Spectroscopic Multicomponent Analysis. Chemometrics and Intelligent Laboratory Systems 2001, 57(2), 65–73. DOI: 10.1016/S0169-7439(01)00119-8.
  • Centner, V.; Massart, D.L.; deNoord, O.E.; deJong, S.; Vandeginste, B.M.; Sterna, C. Elimination of Uninformative Variables for Multivariate Calibration. Analytical Chemistry 1996, 68, 3851–3858. DOI: 10.1021/ac960321m.
  • Zhang, H.; Yu, P.; Ren, J.X.; Li, X.B.; Wang, H.L.; Ding, L.; Kong, W.B. Development of Novel Prediction Model for Drug-Induced Mitochondrial Toxicity by Using Naive Bayes Classifier Method. Food and Chemical Toxicology 2017, 110, 122–129. DOI: 10.1016/j.fct.2017.10.021.
  • Xiang, Z.L.; Yu, X.R.; Kang, D.K. Experimental Analysis of Naive Bayes Classifier Based on an Attribute Weighting Framework with Smooth Kernel Density Estimations. Applied Intelligence 2016, 44(3), 611–620. DOI: 10.1007/s10489-015-0719-1.
  • Hao, S.H.; Ren, M.; Li, D.; Sui, Y.J.; Wang, Q.Y.; Chen, G.Y.; Li, Z.Y.; Yang, Q.W. Fisher Linear Discriminant Analysis for Classification and Prediction of Genomic Susceptibility to Stomach and Colorectal Cancers Based on Six STR Loci in a Northern Chinese Han Population. PeerJ 2019, 7, e7004. DOI: 10.7717/peerj.7004.
  • Guo, Z.M.; Wang, M.M.; Wu, J.Z.; Tao, F.F.; Chen, Q.S.; Wang, Q.Y.; Ouyang, Q.; Shi, J.Y.; Zou, X.B. Quantitative Assessment of Zearalenone in Maize Using Multivariate Algorithms Coupled to Raman Spectroscopy. Food Chemistry 2019, 286, 282–288. DOI: 10.1016/j.foodchem.2019.02.020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.