Publication Cover
Spectroscopy Letters
An International Journal for Rapid Communication
Volume 56, 2023 - Issue 1
132
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Vibrational spectroscopic, electronic influences, reactivity analysis and molecular docking studies of 2-Fluoro-4-iodo-5-methylpyridine

, , , &
Pages 14-27 | Received 17 Oct 2022, Accepted 14 Dec 2022, Published online: 28 Dec 2022

References

  • Mohamed Radwan, A.A.; Maha Alshubramy, A. M.; Abdel-Motaal, B.; Hemdan, A. D.; El-Kady, S. Synthesis, molecular docking and antimicrobial activity of new fused Pyrimidine and Pyridine derivatives. Bioorganic Chemistry 2020, 96, 103516. DOI: 10.1016/j.bioorg.2019.103516.
  • Sujin Jose, P.; Mohan, S. Vibrational spectra and normal co-ordinate analysis of 2-aminopyridine and 2-amino picoline. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 2006, 64(1), 240–245. DOI: 10.1016/j.saa.2005.06.043.
  • Philippe, P.; Philippe Gros, C.; Fort, Y. Solid Phase Synthesis of Pyridine-Based Derivatives from a 2-Chloro-5-Bromopyridine Scaffold. Journal of Combinatorial Chemistry 2005, 7(6), 879–886. DOI: 10.1021/cc050054a.
  • Premkumar, S.; Rekha, T.N.; Mohamed Asath, R.; Mathavan, T.; Milton Franklin Benial, A. Vibrational spectroscopic, molecular docking and density functional theory studies on 2-acetylamino-5-bromo-6-methylpyridine. European Journal of Pharmaceutical Sciences : official Journal of the European Federation for Pharmaceutical Sciences 2016, 82, 115–125. DOI: 10.1016/j.ejps.2015.11.018.
  • Cocco, M.T.; Congiu, C.; Onnis, V. Synthesis and antitumour activity of 4- hydroxy-2-pyridone derivatives. European Journal of Medicinal Chemistry 2000, 35(5), 545–552. DOI: 10.1016/S0223-5234(00)00149-5.
  • Al-Otaibi, J.S. Experimental (FT-IR and FT-Raman spectra) and Theoretical (Ab initio/HF, DFT/B3LYP) Study of 2-Amino-5-Chloropyridine and 2-Amino-6- Chloropyridine. Chemistry and Materials Research 2015, 7, 6.
  • Krayushkin, M. M.; Sedishev, I. P.; Yarovenko, V. N.; Zavarzin, I. V.; Kotovskaya, S. K.; Kozhevnikov, D. N.; Charushin, V. N. Synthesis of Pyridines from 1,2,4-Triazines under High Pressure. Russian Journal of Organic Chemistry 2008, 44(3), 407–411. DOI: 10.1134/S1070428008030160.
  • Schmuck, C.; Wennemers, H. Building a bridge between Chemistry and Biology. Highlights in Bioorganic Chemistry. Weinheim: Wiley-Vch Veriag GmbH & Co. KGaA 2004. DOI: 10.1002/3527603727.ch3a.
  • Mahmood, A.; Allah, A. H.; Balakit, A. A.; Salman, H. I.; Abdulridha, A. A.; Sert, Y. New Heterocyclic Compound as Carbon Steel Corrosion Inhibitor in 1 M H2SO4, High Efficiency at Low Concentration: Experimental and Theoretical Studies. Journal of Adhesion Science and Technology 2022. DOI: 10.1080/01694243.2022.2034588.
  • Abdulridha, A. A.; Albo Hay Allah, M. A.; Makki, S. Q.; Sert, Y.; Salman, H. E.; Balakit, A. A., Corrosion inhibition of carbon steel in 1 M H2SO4 using new Azo Schiff compound: Electrochemical, gravimetric, adsorption, surface and DFT studies. Journal of Molecular Liquids 2020, 315, 113690. DOI: 10.1016/j.molliq.2020.113690.
  • Balakit, A. A.; Makki, S. Q.; Sert, Y.; Ucun, F.; Alshammari, M. B.; Thordarson, P.; El-Hiti, G. A. Synthesis, spectrophotometric and DFT studies of new Triazole Schiff bases as selective naked-eye sensors for acetate anion. Supramolecular Chemistry 2020, 32(10), 519–526. DOI: 10.1080/10610278.2020.1808217.[InsertedFromOnline]
  • Necme, D.; Halil, G.; Onur Erman, D.; Gokhan, A.; Tuggan, A.; Muthu, S.; Yusuf, S. Quantum computational, spectroscopic investigations on N-(2-((2-chloro-4,5-dicyanophenyl)amino)ethyl)-4-methylbenzenesulfonamide by DFT/TD-DFT with different solvents, molecular docking and drug-likeness researches. Colloids and Surfaces A:Physicochemical and Engineering Aspects 2022, 638, 128311. DOI: 10.1016/j.colsurfa.2022.128311.
  • Pollet, P.; Davey, E.,A.; Ureña-Benavides, E.E.; Eckert, C.A.; Liotta, C.L. Solvents for sustainable chemical processes. Green Chem. 2014, 16(3), 1034–1055. DOI: 10.1039/C3GC42302F.
  • Breeden, S.W.; Clark, J.H.; Macquarrie, D.J.; Sherwood, J. Green Solvents. In: Zhang W, Cue BW Jr (eds), Green Techniques for Organic Synthesis and Medicinal Chemistry. Wiley, Chichester 2012, 241–261 DOI: 10.1186/s40508-016-0051-z.
  • Earle, M.J.; Seddon, K.R. Ionic liquids green solvents for the future. Pure and Applied Chemistry 2000, 72(7), 1391–1398. DOI: 10.1351/pac200072071391.
  • Pena-Pereira, F.; Kloskowski, A.; Namieśnik, J. Perspectives on the replacement of harmful organic solvents in analytical methodologies: a framework toward the implementation of a novel generation of eco-friendly alternatives. Green Chemistry 2015, 17(7), 3687–3705. DOI: 10.1039/C5GC00611B.
  • Clark, J.H.; Farmer, T.J.; Hunt, A.J.; Sherwood, J. Opportunities for biobased solvents created as petrochemical and fuel products transition towards renewable resources. International Journal of Molecular Sciences 2015, 16(8), 17101–17159. DOI: 10.3390/ijms160817101.
  • Constable, D.J.C.; Jimenez-Gonzalez, C.; Henderson, R.K. Perspective on solvent use in the pharmaceutical industry. Organic Process Research & Development 2007, 11(1), 133–137. DOI: 10.1021/op060170h.[InsertedFromOnline]
  • Byrne, F. P.; Jin, S.; Paggiola, G.; Petchey, T. H. M.; Clark, J. H.; Farmer, T. J.; Hunt, A. J.; Robert McElroy, C.; Sherwood, J. Tools and techniques for solvent selection: green solvent selection guides. Sustainable Chemical Processes 2016, 4(1), 7. DOI: 10.1186/s40508-016-0051-z.
  • Curzons, A.D.; Constable, D.C.; Cunningham, V.L. Solvent selection guide: a guide to the integration of environmental, health and safety criteria into the selection of solvents. Clean Technologies and Environmental Policy 1999, 1(2), 82–90. DOI: 10.1007/s100980050014.
  • JimáNez-GonzáLez, C.; Curzons, A. D.; Constable, D. J. C.; Cunningham, V. L. Expanding GSK’s solvent selection guide—application of life cycle assessment to enhance solvent selections. Clean Technologies and Environmental Policy 2004, 7(1), 42–50. DOI: 10.1007/s10098-004-0245-z.
  • Prat, D.; Pardigon, O.; Flemming, H.W.; Letestu, S.; Ducandas, V.; Isnard, P.; Guntrum, E.; Senac, T.; Ruisseau, S.; Cruciani, P.; Hosek, P. Sanofi’s solvent selection guide: a step toward more sustainable processes. Organic Process Research & Development 2013, 17(12), 1517–1525. DOI: 10.1021/op4002565.
  • Kim Alfonsi, K.; Colberg, J.; Dunn, P.J.; Fevig, T.; Jennings, S.; Johnson, T.A.; Kleine, H.P.; Knight, C.; Nagy, M.A.; Perry, D.A.; Stefaniak, M. Green chemistry tools to influence a medicinal chemistry and research chemistry based organisation. Green Chem. 2008, 10(1), 31–36. DOI: 10.1039/B711717E.
  • Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian Inc Wallingford, CT, 2009.
  • Jamroz, M.H. Vibrational Energy Distribution Analysis 4, VEDA, Warsaw, 2004.
  • Rauhut, G.; Pulay, P. Transferable scaling factors for density functional derived vibrational force fields. The Journal of Physical Chemistry 1995, 99(10), 3093–3100. DOI: 10.1021/j100010a019.
  • Dennington, R.; Keith, T.; Millam, J., Gauss View, Version 6, Semichem Inc., Shawnee Mission, KS, 2016.
  • Arulaabaranam, K.; Muthu, S.; Mani, G.; Ben Geoffrey, A.S. Speculative assessment, molecular composition, PDOS, topology exploration (ELF, LOL, RDG), ligand-protein interactions, on 5-bromo-3-nitropyridine-2-carbonitrile. Heliyon 2021, 7(5), e07061. DOI: 10.1016/j.heliyon.2021.e07061.
  • Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry 2012, 33(5), 580–592. DOI: 10.1002/jcc.22885.
  • Morris, G.M.; Huey, R.; Olson, A.J. Using AutoDock for ligand-receptor docking. Current Protocols in Bio Informatics 2008, 24, 8.14.1–8.14.40. DOI: 10.1002/0471250953.bi0814s24.
  • Aayisha, S.; Renuga Devi, T.S.; Janani, S.; Muthu, S.; Raja, M.; Sevvanthi, S. DFT, molecular docking and experimental FT-IR, FT-Raman, NMR inquisitions on “4-chloro-N-(4,5-dihydro-1H-imidazol-2-yl)-6-methoxy-2-methylpyrimidin-5-amine”: alpha-2-imidazoline receptor agonist antihypertensive agent. Journal of Molecular Structure 2019, 1186, 468–481. DOI: 10.1016/j.molstruc.2019.03.056.
  • Feng, Z.-Q.; Yang, X.-L.; Ye, Y.-F.; Wang, H.-Q.; Hao, L.-Y. 2-Chloro-5-(chloromethyl)pyridine. Acta Crystallographica. Section E, Structure Reports Online 2011, 67(Pt 2), o366. EDOI: 10.1107/S1600536811000821.
  • Pik, Y.C. Transient Resonance Raman and Density Functional Theory Investigation of the 4-Acetamidophenylnitrenium ion. Journal of Organic Chemistry 2003, 68, 5265. DOI: 10.1021/jo0300439.
  • Colthup, N.B.; Daly, L.H.; Wiberley, S.E. Introduction to Infrared and Raman Spectroscopy, Academic Press 1990, New York.
  • Vimala, M.; Mary, S. S.; Ramalakshmi, R.; Muthu, S. Theoretical effect of green solvent effects on electronic property and reactivity of Tert-butyl 4-formalpiperidine-1-carboxalate. Computational and Theoretical Chemistry 2021, 1201, 113255. DOI: 10.1016/j.comptc.2021.113255.
  • Abraham, C. S.; Prasana, J. C.; Muthu, S.; Fathima Rizwana, B.; Raja, M. Quantum computational studies, spectroscopic (FT-IR, FT-Raman and UV-Vis) profiling, natural hybrid orbital and molecular docking analysis on 2,4 Dibromoaniline. Journal of Molecular Structure 2018, 1160, 393–405. DOI: 10.1016/j.molstruc.2018.02.022.
  • Karabacak, M.; Karaca, C.; Atac, A.; Eskici, M.; Karanfil, A.; Kose, E. Synthesis, analysis of spectroscopic and nonlinear optical properties of the novel compound:[S]-N-benzyl-1-phenyl-5-[thiophen-3-yl]-4-pentyn-2-amine. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 2012, 97, 556–567. DOI: 10.1016/j.saa.2012.05.087.
  • Arulaabaranam, K.; Muthu, S.; Mani, G.; Sevvanthi, S. Quantum mechanical computation, spectroscopic exploration and molecular docking analysis of 2-Bromo-4-fluoroacetanilide. Journal of Molecular Structure 2020, 1220, 128639. DOI: 10.1016/j.molstruc.2020.128639.
  • Udayakumar, V.; Periandy, S.; Ramalingam, S. Experimental (FT-IR and FT-Raman) and theoretical (HF and DFT) investigation, IR intensity, Raman activity and frequency estimation analyses on 1-Bromo-4-chlorobenzene. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 2011, 79(5), 920–927. DOI: 10.1016/j.molstruc.2018.04.014.
  • Zhao, G.-J.; Liu, J.-Y.; Zhou, L.-C.; Han, K.-L. Site-selective photoinduced electron transfer from alcoholic solvents to the chromophore facilitated by hydrogen bonding: a new fluorescence quenching mechanism. The Journal of Physical Chemistry. B 2007, 111 (30), 8940–8945. DOI: 10.1021/jp0734530.
  • Chandralekha, B.; Hemamalini, R.; Muthu, S.; Sevvanthi, S. Spectroscopic (FT-IR, FT-RAMAN, NMR, UV-Vis) investigations, Computational analysis and molecular docking study of 5-bromo-2-hydroxy pyrimidine. Journal of Molecular Structure 2020, 1218, 128494. DOI: 10.1016/j.molstruc.2020.128494.
  • Muthu, S.; Uma Maheswari, J.; Sundius, T. Quantum mechanical, spectroscopic studies (FT-IR, FT-Raman, NMR, UV) and normal coordinates analysis on 3-([2-(diaminomethyleneamino) thiazol-4-yl] methylthio)-N’ -sulfamoyl-propanimidamide. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 2013, 108, 307–e318. DOI: 10.1016/j.saa.2013.02.022.
  • Ramalingam, S.; Karabacak, M.; Periandy, S.; Puviarasan, N.; Tanuja, D. Spectroscopic (infrared, Raman, UV and NMR) analysis, Gaussian hybrid computational investigation (MEP maps/HOMO and LUMO) on cyclohexanone oxime. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 2012, 96, 207–e220. DOI: 10.1016/j.saa.2012.03.090.
  • Aarthi, K.V.; Rajagopal, H.; Muthu, S.; Jayanthi, V.; Girija, R. Quantum chemical calculations, spectroscopic investigation and molecular docking analysis of 4-chloro-N-methylpyridine-2- carboxamide. Journal of Molecular Structure 2020, 1210, 128053. DOI: 10.1016/j.molstruc.2020.128053.
  • Saral, A.; Sudha, P.; Muthu, S.; Sevvanthi, S.; Sangeetha, P.; Selvakumari, S. Vibrational spectroscopy, quantum computational and molecular docking studies on 2-chloroquinoline-3-carboxaldehyde. Heliyon 2021, 7(7), e07529. DOI: 10.1016/j.heliyon.2021.e07529.
  • Ott, J.; Boerio-Goates, J. Chemical Thermodynamics: principles and Applications. San Diego: Academic Press, 2000.
  • Sathish, M.; Rajasekaran, L.; Shanthi, D.; Kanagathara, N.; Sarala, S.; Muthu, S. Spectroscopic (FT-IR, FT-Raman, UV-Vis) molecular structure, electronic, molecular docking, and thermodynamic investigations of indole-3-carboxylic acid by DFT method. Journal of Molecular Structure 2021, 1234, 130182. DOI: 10.1016/j.molstruc.2021.130182.
  • Sivaprakash, S.; Prakash, S.; Mohan, S.; Sujin Jose, P. Quantum chemical studies and spectroscopic investigations on 2-amino-3- methyl-5-nitropyridine by density functional theory. Heliyon 2019, 5(7), e02149. DOI: 10.1016/j.heliyon.2019.e02149.
  • Al-Otaibi, J. S.; Mary, Y. S.; Armaković, S.; Thomas, R. Hybrid and bioactive cocrystals of pyrazinamide with hydroxybenzoic acids: Detailed study of structure, spectroscopic characteristics, other potential applications and noncovalent interactions using SAPT. Journal of Molecular Structure 2020, 1202, 127316. DOI: 10.1016/j.molstruc.2019.127316.
  • Weinhold, F.; Landis, C.R.; Glendening, E.D. What is NBO analysis and how is it useful? International Reviews in Physical Chemistry 2016, 35(3), 399–440. DOI: 10.1080/0144235X.2016.1192262.
  • Raissi, H.; Jalbout, A. F.; Yoosefian, M.; Fazli, M.; Nowroozi, A.; Shahinin, M.; De Leon, A. Intramolecular hydrogen bonding in structural conformers of 2-amino methylene malonaldehyde: AIM and NBO studies. International Journal of Quantum Chemistry 2009, 110(4), NA–NA. DOI: 10.1002/qua.21795.
  • Jayabharathi, J.; Thanikachalam, V.; Jayamoorthy, K.; Venkatesh Perumal, M. Computational studies of 1,2-disubstituted benzimidazole derivatives. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 2012, 97, 131–136. DOI: 10.1016/j.saa.2012.05.085.
  • Manjusha, P.; Prasana, J. C.; Muthu, S.; Rizwana, B. F. Spectroscopic elucidation (FT-IR, FT-Raman and UV-visible) with NBO, NLO, ELF, LOL, drug likeness and molecular docking analysis on 1-(2- ethylsulfonylethyl)-2-methyl-5-nitro-imidazole: An antiprotozoal agent. Computational Biology and Chemistry 2020, 88, 107330. DOI: 10.1016/j.compbiolchem.2020.107330.
  • Nkungli, N. K.; Ghogomu, J. N. Theoretical analysis of the binding of iron (III) protoporphyrin IX to 4-methoxyacetophenone thiosemicarbazone via DFT-D3, MEP, QTAIM, NCI, ELF, and LOL studies. Journal of Molecular Modeling 2017, 23 (7), 1–20. DOI: 10.1007/s00894-017-3370-4.
  • Parr, R.G.; Yang, W. Functional Theory of Atoms and Molecules. New York: Oxford University Press, 1989.
  • Ayers, P.W.; Parr, R.G. Variational principals for describing chemical reactions: The Fukui function and chemical hardness revisted. Journal of the American Chemical Society 2000, 122(9), 2010–2018. DOI: 10.1021/ja9924039.
  • Renuga, S.; Karthikesan, M.; Muthu, S. FTIR and Raman spectra, electronic spectra and normal co-ordinate analysis of N, N-dimethyl-3-phenyl-3-pyridin2-yl-propan-1-amine by DFT method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2014, 127, 439–453. DOI: 10.1016/j.saa.2014.02.068.
  • Chattaraj, P. K.; Maiti, B.; Sarkar, U. Philicity: A Unified Treatment of Chemical Reactivity and Selectivity. The Journal of Physical Chemistry A 2003, 107(25), 4973–4975. DOI: 10.1021/jp034707u.
  • Alsalme, A.; Pooventhiran, T.; Al-Zaqri, N.; Rao, D.J.; Thomas, R. Structural, physico-chemical landscapes, ground state and excited state properties in different solvent atmosphere of Avapritinib and its ultrasensitive detection using SERS/GERS on self-assembly formation with graphene quantum dots. Journal of Molecular Liquids 2021, 322, 114555. DOI: 10.1016/j.molliq.2020.114555.
  • Lipinski, C. A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discovery Today. Technologies 2004, 1(4), 337–341. DOI: 10.1016/j.ddtec.2004.11.007.
  • Sangeetha, P.; Mullainathan, S.; Muthu, S.; Rajaraman, B.R.; Saral, A.; Selvakumari, S. Investigation of spectroscopic (FT-IR, FT-Raman), reactive charge transfer and docking properties of (1S) -(+)-10-Camphorsulfonic acid by density functional method. Materials Today: Proceedings 2022, 50, 2768–2776. DOI: 10.1016/j.matpr.2020.08.674.
  • Beaula, T. J.; Joe, I. H.; Rastogi, V. K.; Jothy, V. B. Spectral investigations, DFT computations and molecular docking studies of the antimicrobial 5-nitroisatin dimer. Chemical Physics Letters 2015, 624, 93–101. DOI: 10.1016/j.cplett.2015.02.026.
  • Sevvanthi, S.; Muthu, S.; Raja, M. Molecular docking, vibrational spectroscopy studies of (RS)-2-(tert-Butylamino)-1-(3-chlorophenyl)propan-1-one: a potential Adrenaline uptake inhibitor. Journal of Molecular Structure 2018, 1173, 251–e260. DOI: 10.1016/j.molstruc.2018.07.001.
  • Laskowski, R. A.; MacArthur, M. W.; Moss, D. S.; Thornton, J. M. PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography 1993, 26(2), 283–291. DOI: 10.1107/S0021889892009944.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.