Publication Cover
Spectroscopy Letters
An International Journal for Rapid Communication
Volume 56, 2023 - Issue 6
122
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Spectroscopic analysis of 2-amino-1-naphthalenesulfonic acid, molecular docking, and evaluation of the electronic properties of several solvents

, , , &
Pages 323-342 | Received 16 Feb 2023, Accepted 23 Apr 2023, Published online: 16 May 2023

References

  • Collin, G.; Höke, H.; Greim, H. Naphthalene, Hydronaphthalenes. In Ullmann’s Encyclopedia of Industrial Chemistry; Elvers, B., Hawklins, S., Schulz, G., Eds; Wiley-VCH: Weinheim, Germany, 2003, 5500–6000. DOI: 10.1002/14356007.a17_001.pub2.
  • Booth, G. Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH, Germany, 2005. DOI: 10.1016/j.saa.2011.04.003.
  • Supuran, C. T.; Casini, A.; Scozzafava, A. Protease Inhibitors of the Sulfonamide Type: Anticancer, Antiinflammatory, and Antiviral Agents. Medicinal Research Reviews 2003, 23(5), 535–558. DOI: 10.1002/med.10047.
  • Seydel, J. K. Sulfonamides, Structure-activity Relationship, and Mode of Action. Journal of Pharmaceutical Sciences 1968, 57(9), 1455–1478. DOI: 10.1002/jps.2600570902.
  • Henry, R. J. The Mode of Action of Sulfonamides. Bacteriological Reviews 1943, 7(4), 175–262. DOI: 10.1128/br.7.4.175-262.1943.
  • Patra, A. Evaluation of Antimicrobial Activity of Sulfonamide Derivatives. Chemicalland21.com 2014.
  • Lackie, J. A Dictionary of Biomedicine; Oxford University Press, Cumbria, 2010.
  • Markowicz-Piasecka, M.; Huttunen, K. M.; Mateusiak, L.; Mikiciuk-Olasik, E.; Sikora, J. Is Metformin a Perfect Drug? Updates in Pharmacokinetics and Pharmacodynamics. Current Pharmaceutical Design 2017, 23(17), 2532–2555. DOI: 10.2174/1381612822666161201152941.
  • Melnick. Review of Medical Microbiology; Cambridge University Press, Germany, 1983.
  • Atmar, R. L.; Piedra, P. A.; Patel, S. M.; Couch, R. B.; Glezen. Respiratory Syncytial Virus: Infection, Detection, and New Options for Prevention and Treatment. Clinical Microbiology Reviews 2011, 50, 506–508. DOI: 10.1128/JCM.05999-11.
  • Shah, M. Microbial Treatment of Textile Dye Reactive Red 3 by a Newly Developed Bacterial Consortium. International Journal of Environmental Bioremediation & Biodegradation 2014, 62, 231–242. DOI: 10.12691/ijebb-2-5-4.
  • Lipskikh, O. I.; Korotkova, E. I.; Khristunova, Y. P.; Barek, J.; Kratochvil, B. Sensors for Voltammetric Determination of Food Azo Dyes - A Critical Review. Electrochimica Acta 2018, 260, 974–985. DOI: 10.1016/j.electacta.2017.12.027.
  • Berradi, M.; Hsissou, R.; Khudhair, M.; Assouag, M.; Cherkaoui, O.; El Bachiri, A.; El Harfi, A. Textile Finishing Dyes and Their Impact on Aquatic Environments. Heliyon 2019, 5(11), e02711. DOI: 10.1016/j.heliyon.2019.-02711.
  • Benkhaya, S.; El Harfi, A. Classifications, Properties and Applications of Textile Dyes. Journal of Environmental Engineering and Science 2017, 3, 311–320. DOI: 10.48422/IMIST.PRSM/ajees-v3i3.9681.
  • Collin, G.; Höke, H.; Greim, H. Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH, Germany, 2003. DOI: 10.1021/ed200816g.
  • Booth, G. “Naphthalene Derivatives" in Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2005. DOI: 10.1002/14356007.a17_009.
  • Sangeetha, P.; Mullainathan, S.; Muthu, S.; Irfan, A.; Sevvanthi, S.; Asif, F. B. Electronic Properties (in Different Solvents), Spectroscopic Progression and Evaluation on 4-Morpholinepropane Sulfonic Acid along with Molecular Docking Analysis. Journal of Molecular Liquids 2022, 349, 118107. DOI: 10.1016/j.molliq.2021.118107.
  • Saral, A.; Sudha, P.; Muthu, S.; Sevvanthi, S.; Sangeetha, P.; Selvakumari, S. Vibrational spectroscopy, Quantum Computational and Molecular Docking Studies on 2-Chloroquinoline-3-carboxaldehyde. Heliyon 2021, 7(7), e07529. DOI: 10.1016/j.heliyon.2021.-07529.
  • Alkurdi, A.; AlJahdali, M.; Alshehri, A. Study of Synthesis, Characterization, DFT, and In Vitro Biological Activity of Cu(II), Co(II), and Fe(II) Metal Complexes Based on Heterocyclic Azo Pyrazole Dye Ligand. Journal of Chemistry 2022, 2022, 1–15. DOI: 10.1155/2022/3476954.
  • Jamróz, M. H. Vibrational Energy Distribution Analysis (VEDA): Scopes and Limitations. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 2013, 114, 220–230. DOI: 10.1016/j.saa.2013.05.096.
  • Priya, Y. S.; Rao, K. R.; Chalapathi, P. V.; Veeraiah, A. Vibrational and Electronic Spectra of 2-Phenyl-2-Imidazoline: A Combined Experimental and Theoretical Study. Journal of Modern Physics 2018, 09(04), 753–774. DOI: 10.4236/jmp.2018.94049.
  • Keresztury, G.; Chalmers, J. M.; Griffith, P. R. Theory in Hand Book of Vibrational Spectroscopy, vol. 1; John Wiey & Sons Ltd: New York, NY, 2002. DOI: 10.4236/ojapps.2014.43012.
  • Sangeetha, P.; Mullainathan, S.; Muthu, S.; Rajaraman, B. R.; Saral, A.; Selvakumari, S. Investigation of Spectroscopic (FT-IR, FT-Raman), Reactive Charge Transfer and Docking Properties of (1S) -(+)-10-Camphorsulfonic Acid by Density Functional Method. Materials Today: Proceedings 2022, 50, 2768–2776. DOI: 10.1016/j.matpr.2020.08.674.
  • Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. Journal of Computational Chemistry 2012, 33(5), 580–592. DOI: 10.1002/jcc.22885.
  • Antoine, D.; Michielin, O.; Zoete, V.; Swiss ADME: A free web tool to evaluate Pharmacokinetics, drug-likeness, and medicinal chemistry friendliness of small molecules. Science Report 2017, 7, 42717. DOI: https://doi.org/10.1038/srep42717
  • Zakharov, A.; Poroikov, V. GUSAR - Prediction of Values for Substances, 2010. http://pharmaexpert.ru/GUSAR/environmental.html (accessed Feb. 2, 2023).
  • Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. The Locus PgaABCD of Acinetobacter junii Putatively Responsible for Poly-β-(1,6)-N-Acetylglucosamine Biosynthesis Might Be Related to Biofilm Formation: A Computational Analysis. Journal of Computational Chemistry 1998, 19(14), 1639–1662. DOI: 10.1002/jcc.21256.
  • Sangeetha, P.; Mullainathan, S.; Rajasekaran, L.; Muthu, S.; Irfan, A.; Saral, A. Electronic Properties of Solvents (Water, Benzene, Ethanol) Using IEFPCM Model, Spectroscopic Exploration with Drug Likeness and Assessment of Molecular Docking on 1-Octanesulfonic Acid Sodium Salt. Journal of Molecular Liquids 2021, 344, 117719. DOI: 10.1016/j.molliq.2021.117719.
  • Smith, B. Infrared Spectral Interpretation; CRC Press, New York, 2018. DOI: 10.1201/978020375084100.
  • Baas, J. M. A.; Roeges, N. P. G. A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures; John Wiley; Chichester, England, 1994.
  • Perkampus, H. -H.; Bellamy, L. J. The Infrared Spectra of Complex Molecules, Vol. 1; Auflage, Chapman and Hall Ltd: London, England, 1975.
  • Swarnalatha, N.; Gunasekaran, S.; Muthu, S.; Nagarajan, M. Molecular Structure Analysis and Spectroscopic Characterization of 9-Methoxy-2H-Furo[3,2-g]Chromen-2-One with Experimental (FT-IR and FT-Raman) Techniques and Quantum Chemical Calculations. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 2015, 137, 721–729. DOI: 10.1016/j.saa.2014.08.125.
  • Karabacak, M.; Karaca, C.; Atac, A.; Eskici, M.; Karanfil, A.; Kose, E. Crystal Structure, Vibrational Spectroscopic, Electronic Properties and DFT Calculations of LGlycinium Hydrogen Squarate: A Non-linear Optical Single Crystal. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2012, 97, 556–567. DOI: 10.1016/j.jics.2022.100478.
  • Sourisseau, C.; Maraval, P. Optical and Resonance Raman Scattering Study of Two “Bisazo” Pigments Derived from Substituted Benzene-2′-Azonaphthols. Journal of Raman Spectroscopy 1994, 25(7-8), 477–488. DOI: 10.1002/jrs.1250250708.
  • Barnes, A. J.; Majid, M. A.; Stuckey, M. A.; Gregory, P.; Stead, C. V. The Resonance Raman Spectra of Orange II and Para Red: Molecular Structure and Vibrational Assignment. Spectrochimica Acta Part A: Molecular Spectroscopy 1985, 41(4), 629–635. DOI: 10.1016/0584-8539(85)80050-7.
  • Weinhold, F.; Glendening, E. D. Comment on “Natural Bond Orbitals and the Nature of the Hydrogen Bond. The Journal of Physical Chemistry. A 2018, 122(2), 724–732. DOI: 10.1021/acs.jpca.7b08165.
  • Sidir, I.; Sidir, Y. G.; Kumalar, M.; Tasal, E. Crystal Structure and Dft Calculation Studies of Ni(Ii) Cinnamaldehyde Thiosemicarbazone Complex. Journal of Molecular Structure 2010, 964, 134–151. DOI: 10.1016/j.molstruc.2009.11.02.
  • Badenhoop, J. K.; Weinhold, F. Natural Bond Orbital Analysis of Steric Interactions. Journal of Chemical Physics 1997, 107(14), 5406–5421. DOI: 10.1021/acs.jpca.7b08165.
  • Foster, J. P.; Weinhold, F. Natural Hybrid Orbitals. Journal of the American Chemical Society 1980, 102(24), 7211–7218. DOI: 10.1021/ja00544a007.
  • Reed, A. E.; Weinhold, F. Natural Bond Orbital Analysis of Near‐Hartree–Fock Water Dimer. The Journal of Chemical Physics 1983, 78(6), 4066–4073. DOI: 10.1063/1.445134.
  • Muthu, S.; Elamurugu Porchelvi, E.; Karabacak, M.; Asiri, A. M.; Swathi, S. S. Synthesis, Structure, Spectroscopic Studies (FT-IR, FT-Raman and UV), Normal Coordinate, NBO and NLO Analysis of Salicylaldehyde p-Chlorophenylthiosemicarbazone. Journal of Molecular Structure 2015, 1081, 400–412. DOI: 10.1016/j.molstruc.2014.10.024.
  • Politzer, P.; Murray, J. S. The Fundamental Nature and Role of the Electrostatic Potential in Atoms and Molecules. Theoretical Chemistry Accounts: Theory, Computation, and Modeling. Theoretica Chimica Acta 2002, 108(3), 134–142. DOI: 10.1007/s00214-002-0363-9.
  • Choi, D.-S.; Huang, S.; Huang, M.; Barnard, T. S.; Adams, R. D.; Seminario, J. M.; Tour, J. M. Revised Structures of N -Substituted Dibrominated Pyrrole Derivatives and Their Polymeric Products. Termaleimide Models with Low Optical Band Gaps. The Journal of Organic Chemistry 1998, 63(8), 2646–2655. DOI: 10.1021/jo9722055.
  • Suzuki, W.; Fujiwara, E.; Kobayashi, A.; Fujishiro, Y.; Nishibori, E.; Takata, M.; Sakata, M.; Fujiwara, H.; Kobayashi, H. Highly Conducting Crystals Based on Single-component Gold Complexes with Extended-TTF Dithiolate Ligands. Journal of the American Chemical Society 2003, 125(6), 1486–1487. DOI: 10.1021/ja0292243.
  • Murray, J. S.; Politzer, P. Hydrogen Bonding: A Coulombic σ-Hole Interaction. Journal of the Indian Institute of Science 2020, 100(1), 21–30. DOI: 10.1007/s41745-019-00139-3.
  • Saral, A.; Sudha, P.; Muthu, S.; Irfan, A. Computational, Spectroscopic and Molecular Docking Investigation on a Bioactive Anti-cancer Drug: 2-Methyl-8-Nitro Quinoline. Journal of Molecular Structure 2022, 1247, 131414. DOI: 10.1016/j.molstruc.2021.131414.
  • Lewis, D.F.V.; Ioannides, C.; Parke, D.V. Interaction of a Series of Nitriles with the Alcohol-Inducible Isoform of P450: Computer Analysis of structure–Activity Relationships. Xenobiotica; the Fate of Foreign Compounds in Biological Systems 1994, 24(5), 401–408. DOI: 10.3109/00498259409043243.
  • Parr, R. G.; Donnelly, R. A.; Levy, M.; Palke, W. E. Electronegativity: The Density Functional Viewpoint. The Journal of Chemical Physics 1978, 68(8), 3801–3807. DOI: 10.1063/1.436185.
  • Pearson, R. G. Absolute Electronegativity and Hardness: Application to Inorganic Chemistry. Inorganic Chemistry 1988, 27(4), 734–740. DOI: 10.1021/ic00277a030.
  • Geerlings, P.; de Proft, F.; Langenaeker, W. Conceptual Density Functional Theory. Chemical Reviews 2003, 103(5), 1793–1873. DOI: 10.1021/cr990029p.
  • Parthasarathi, R.; Padmanabhan, J.; Elango, M.; Subramanian, V.; Chattaraj, P. K. Intermolecular Reactivity through the Generalized Philicity Concept. Chemical Physics Letters 2004, 394(4-6), 225–230. DOI: 10.1016/j.cplett.2004.07.002.
  • Parthasarathi, R.; Padmanabhan, J.; Subramanian, V.; Maiti, B.; Chattaraj, P. Careful Scrutiny of the Philicity Concept. Current Science 2004, 86, 535–542. DOI: 10.1016/j.cplett.2004.07.002.
  • Parthasarathi, R.; Padmanabhan, J.; Subramanian, V.; Sarkar, U.; Maiti, B.; Chattaraj, P. Careful Scrutiny of the Philicity Concept. Journal of Molecular Design 2003, 2, 798–813. DOI: 10.1016/j.cplett.2004.07.002.
  • Klamt, A.; Moya, C.; Palomar, J. A Comprehensive Comparison of the IEFPCM and SS(V)PE Continuum Solvation Methods with the COSMO Approach. Journal of Chemical Theory and Computation 2015, 11(9), 4220–4225. DOI: 10.1021/acs.jctc.5b00601.
  • Selvakumari, S.; Venkataraju, C.; Muthu, S.; Raajaraman, B. R.; Sangeetha, P.; Saral, A. Spectroscopic, Quantum Mechanical Investigation and Molecular Docking Study of 2-Amino-5-Chloro-3-Nitropyridine. Materials Today: Proceedings 2022, 50, 2711–2719. DOI: 10.1016/j.matpr.2020.08.223.
  • Parr, R. G.; Yang, W. Functional Theory of Atoms and Molecules; Oxford University Press, New York, NY, 1989. DOI: 10.1063/1.3160670.
  • Ayers, P. W.; Parr, R. G. Variational Principles for Describing Chemical Reactions: The Fukui Function and Chemical Hardness Revisited. Journal of the American Chemical Society 2000, 122(9), 2010–2018. DOI: 10.1021/ja9924039.
  • Renuga, S.; Karthikesan, M.; Muthu, S. FTIR and Raman Spectra, Electronic Spectra and Normal Coordinate Analysis of N,N-Dimethyl-3-Phenyl-3-Pyridin-2-yl-Propan-1-Amine by DFT Method. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 2014, 127, 439–453. DOI: 10.1016/j.saa.2014.02.068.
  • Becke, A. D.; Edgecombe, K. E. A Simple Measure of Electron Localization in Atomic and Molecular Systems. The Journal of Chemical Physics 1990, 92(9), 5397–5403. DOI: 10.1063/1.458517.
  • Abraham, C. S.; Prasana, J. C.; Muthu, S.; Rizwana B, F.; Raja, M. Quantum Computational Studies, Spectroscopic (FT-IR, FT-Raman and UV–Vis) Profiling, Natural Hybrid Orbital and Molecular Docking Analysis on 2,4 Dibromoaniline. Journal of Molecular Structure 2018, 1160, 393–405. DOI: 10.1016/j.molstruc.2018.02.022.
  • Poater, J.; Duran, M.; Solà, M.; Silvi, B. Theoretical Evaluation of Electron Delocalization in Aromatic Molecules by Means of Atoms in Molecules (AIM) and Electron Localization Function (ELF) Topological Approaches. Chemical Reviews 2005, 105(10), 3911–3947. DOI: 10.1021/cr030085x.
  • Kuruvilla, T. K.; Muthu, S.; Prasana, J. C.; George, J.; Sevvanthi, S. Spectroscopic (FT-IR, FT-Raman), Quantum Mechanical and Docking Studies on Methyl[(3S)-3-(Naphthalen-1-Yloxy)-3-(Thiophen-2-yl)Propyl]Amine. Journal of Molecular Structure 2019, 1175, 163–174. DOI: 10.1016/j.molstruc.2018.07.097.
  • Fathima Rizwana, B.; Muthu, S.; Prasana, J. C.; Abraham, C. S.; Raja, M. Spectroscopic (FT-IR, FT-Raman) Investigation, Topology (ESP, ELF, LOL) Analyses, Charge Transfer Excitation and Molecular Docking (Dengue, HCV) Studies on Ribavirin. Chemical Data Collections 2018, 17-18, 236–250. DOI: 10.1016/j.cdc.2018.09.003.
  • Selvakumari, S.; Venkataraju, C.; Muthu, S.; Irfan, A.; Shanthi, D. Donor Acceptor Groups Effect, Polar Protic Solvents Influence on Electronic Properties and Reactivity of 2-Chloropyridine-4-Carboxylic Acid. Journal of the Indian Chemical Society 2022, 99(6), 100478. DOI: 10.1016/j.jics.2022.100478.
  • Nkungli, N. K.; Ghogomu, J. N. Theoretical Analysis of the Binding of Iron(III) Protoporphyrin IX to 4-Methoxyacetophenone Thiosemicarbazone via DFT-D3, MEP, QTAIM, NCI, ELF, and LOL Studies. Journal of Molecular Modeling 2017, 23(7), 200. DOI: 10.1007/s00894-017-3370-4.
  • Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings 1PII of Original Article: S0169-409X(96)00423-1. Advanced Drug Delivery Reviews 2001, 46(1-3), 3–26. DOI: 10.1016/S0169-409X(00)00129-0.
  • Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Advanced Drug Delivery Reviews 2012, 64, 4–17. DOI: 10.1016/j.addr.2012.09.019.
  • Zakharov, A.; Poroikov and Associates. Prediction of Values of Substances;, QSAR, 2010. https://doi.org/10.1002/minf.201000151 (accessed Mar. 18, 2023).
  • Thomas, R.; Mary, Y. S.; Resmi, K. S.; Narayana, B.; Sarojini, B. K.; Vijayakumar, G.; Van Alsenoy, C. Two Neoteric Pyrazole Compounds as Potential Anti-cancer Agents: Synthesis, Electronic Structure, Physico-chemical Properties and Docking Analysis. Journal of Molecular Structure 2019, 1181, 455–466. DOI: 10.1016/j.molstruc.2019.01.003.
  • Reddy, C. S.; Sunitha, B.; Raviteja, P.; Kumar, G. R.; Manjari, P. S. Synthesis, Biological Evaluation and QSAR Studies of a Novel Series of Annelated Triazolo[4,3-c]Quinazol. Indian Journal of Chemistry Section B - Organic and Medicinal Chemistry 2016, 55B, 898–911.
  • Saji, R. S.; Prasana, J. C.; Muthu, S.; George, J.; Kuruvilla, T. K.; Raajaraman, B. R. Spectroscopic (FT-IR, FT-Raman, UV-Visible), Quantum Mechanical Based Computational Studies and Molecular Docking Analysis of 2-Amino-3,5-Dichloropyridine. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 2020, 226, 117614. DOI: 10.1016/j.molliq.2020.11476.
  • Kragh-Hansen, U. Relations between High-affinity Binding Sites of Markers for Binding Regions on Human Serum Albumin. The Biochemical Journal 1985, 225(3), 629–638. DOI: 10.1042/bj2250629.
  • Govindammal, M.; Prasath, M. Vibrational Spectra, Hirshfeld Surface Analysis, Molecular Docking Studies of (RS)-N,N-Bis(2-Chloroethyl)-1,3,2-Oxazaphosphinan-2-Amine 2-Oxide by DFT Approach. Heliyon 2020, 6(8), e04641. DOI: 10.1016/j.heliyon.2020.e04641.
  • Govindammal, M.; Prasath, M.; Selvapandiyan, M. Spectroscopic (FT-IR, FT-Raman) Investigations, Quantum Chemical Calculations, ADMET and Molecular Docking Studies of Phloretin with B-RAF Inhibitor. Chemical Papers 2021, 75(8), 3771–3785. DOI: 10.1007/s11696-021-01576-0.
  • Bangaru, S.; Manivannan, P. Probing the Structural Properties, Binding Mode and Intermolecular Interactions of Herbacetin against H1N1 Neuraminidase Using Vibrational Spectroscopic, Quantum Chemical Calculation and Molecular Docking Studies. Research on Chemical Intermediates 2021, 47(7), 2775–2799. DOI: 10.1007/s11164-021-04408-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.