174
Views
2
CrossRef citations to date
0
Altmetric
Articles

Reduction of measurement data before Digital Terrain Model generation vs. DTM generalisation

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 422-430 | Received 03 Jan 2018, Accepted 01 May 2018, Published online: 26 Jun 2018

References

  • Bakuła, K., 2011. Comparison of six approaches in DTM reduction for flood risk determination. In: Challenges of modern technology, WUT PhD Students Board, Vol. 2, 31–36.
  • Bakuła, K., 2014. The role of the reduction of elevation data obtained from airborne laser scanning in the process of flood hazard map creation. Thesis (PhD). Warsaw: Warsaw University of Technology. doi:10.13140/RG.2.1.2186.2242.
  • Bauer-Marschallinger, B., Sabel, D., and Wagner, W., 2014. Optimisation of global grids for high-resolution remote sensing data. Computers & geosciences, 72, 84–93. doi:10.1016/j.cageo.2014.07.005.
  • Błaszczak, W., 2006. Optimization of large measurement results sets for building data base of spacial information system. Doctoral thesis. University of Warmia and Mazury in Olsztyn.
  • Błaszczak-Bąk, W., 2016. New optimum dataset method in LiDAR processing. Acta geodynamica et geomaterialia, 13/4 (184), 379–386. doi:10.13168/AGG.2016.0020.
  • Błaszczak-Bąk, W., et al., 2011. ALS data filtration with fuzzy logic. Journal of the indian society of remote sensing, 39, 591–597. doi:10.1007/s12524-011-0130-2.
  • Błaszczak-Bąk, W., et al., 2012. Optimization algorithm and filtration using the adaptive TIN model at the stage of initial processing of the ALS point cloud. Canadian journal of remote sensing, 37 (6), 583–589. doi:10.5589/m12-001.
  • Błaszczak-Bąk, W., Sobieraj-Żłobińska, A., and Kowalik, M., 2017. The OptD-multi method in LiDAR processing. Measurement science and technology, 28 (7), 075009 (10pp.). doi:10.1088/1361-6501/aa7444.
  • Briese, C., et al., 2009. Automatic break line determination for the generation of a DTM along the river main. ISPRS Workshop Laserscanning, Commission III/2, Paris.
  • Chen, Y., 2012. High performance computing for massive LiDAR data processing with optimized GPU parallel programming. University of Texas at Dallas. Book. Graduate Program in Geospatial Information Science.
  • Chen, Z.T. and Guevara, J.A., 1987. Systematic selection of very important point (VIP) from digital terrain model for constructing triangular irregular networks. In: Proceedings of international symposium on computer-assisted cartography (AUTO-CARTO 8), March 29–3 April, Baltimore, MD: ASPRS Pubns Ltd. 50–56.
  • Douglas, D.H. and Peucker, T.K., 1973. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica: the international journal for geographic information and geovisualization, 10 (2), 112–122. doi: 10.3138/FM57-6770-U75U-7727
  • De Floriani, L., 1989. A pyramidal data structure for triangle-based surface description. IEEE computer graphics and applications, 9 (2), 67–78. doi:10.1109/38.19053.
  • Haile, A. and Rientjes, T., 2005. Effects of LiDAR resolution in flood modelling: a model stativity study for the city of Tegucigalpa, Honduras. ISPRS EG III/3, III/4, V/3 Workshop Laser scanning 2005.
  • Kozioł, K., Knecht, J., and Szombra, S., 2012. The importance of hierarchy in the generalisation of DTM. Geomatics and Engineering, No. 2, 60–75.
  • Liu, H. and Yang, X., 2012. Software reuse in the emerging cloud computing era. Hershey, PA: IGI Global.
  • Nyerges, T.L., 1991. Geographic information abstractions: conceptual clarity for geographic modeling. Environment and Planning A: Economy and Space, 23 (10), 1483–1499. doi:10.1068/a231483.
  • Poniewiera, M. and Jelonek, I., 2015. Qualitative deposit modelling: example Kompania Węgowa S.S. In: 67th annual meeting of the international committee for coal and organic petrology, 5–11 September, Potsdam, Germany, ICCP program & abstract book. Stuttgart: Schweizerbat Science, 91–96.
  • Suchocki, C., Katzer, J., and Panuś, A., 2017. Remote sensing to estimate saturation differences of chosen building materials using terrestrial laser scanner. Reports on geodesy and geoinformatics, 103 (1), 94–105. doi:10.1515/rgg-2017-0008.
  • Visvalingam, M. and Whyatt, J.D., 1992. Line generalization by repeated elimination of point. Cartographic Information Systems Research Group. University of Hull Information Systems Research Group.
  • Weiber, R., 1992. Model and experimente for adaptivecomputer-assisted terrain generalization. Cartograph and geographic information system, 19 (3), 133–153. doi:10.1559/152304092783762317.
  • Weiss, A., 2001. Topographic positions and landforms analysis (conference poster). In: ESRI international user conference, 9–13 July, San Diego, CA, USA, 9–13.
  • Wolfram, S., 2002. A new kind of science. Winnipeg: Wolfram Media.
  • Zhou, Q. and Chen, Y., 2011. Generalization of DEM for terrain analysis using a compound method. ISPRS journal of photogrammetry and remote sensing, 66, 38–45. doi: 10.1016/j.isprsjprs.2010.08.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.