230
Views
4
CrossRef citations to date
0
Altmetric
Articles

Assessment of the accuracy of DTM river bed model using classical surveying measurement and LiDAR: a case study in Poland

ORCID Icon, ORCID Icon & ORCID Icon
Pages 246-252 | Received 19 Apr 2019, Accepted 19 Nov 2019, Published online: 01 Dec 2019

References

  • Bechteler, W., et al., 2001. Hydraulische und wasserbauliche Grundlagen. In: H. Patt, ed. Hochwasser-Handbuch. Berlin: Springer, 59–168.
  • Büchele, B., et al., 2006. Flood-risk mapping: Contributions towards an enhanced assessment of extreme events and associated risks. Natural hazards and earth system science, 6, 485–503. doi: 10.5194/nhess-6-485-2006
  • Chaabani, C., et al., 2018. Flood mapping in a complex environment using bistatic TanDEM-X/TerraSAR-X InSAR coherence. Remote sensing, 10, 1873. doi:10.3390/rs10121873.
  • Chockalingam, J., et al., 2017. Remote sensing and GIS for civil engineering applications and human development. IJARSGG, 5 (1), 1–18.
  • Dawidowicz, K., and Krzan, G., 2014. Accuracy of single receiver static GNSS measurements under conditions of limited satellite availability. Survey review, 46, 278–287. doi:10.1179/1752270613Y.0000000082.
  • Dorn, H., Vetter, M., and Höfle, B., 2014. GIS-based roughness derivation for flood simulations: a comparison of orthophotos, LiDAR and crowd sourced geodata. Remote sensing, 6, 1739–1759. doi: 10.3390/rs6021739
  • Faulkner, H., et al., 2007. Developing a translational discourse to communicate uncertainty in flood risk between science and the practitioner. AMBIO journal human environment, 36, 692–704. doi: 10.1579/0044-7447(2007)36[692:DATDTC]2.0.CO;2
  • Guo, H., et al., 2018. Comparison of the vegetation effect on ET partitioning based on eddy covariance method at five different sites of northern China. Remote sensing, 10, 1755. doi:10.3390/rs10111755.
  • Heipke, C., et al., 1997. Evaluation of automatic road extraction. International archives of photogrammetry remote sensing spatial information science, 32 (Part 3–2W2), 47–56.
  • Höfle, B., and Pfeifer, N., 2007. Correction of laser scanning intensity data: data and model-driven approaches. ISPRS journal of photogrammetry and remote sensing, 62, 415–433. doi: 10.1016/j.isprsjprs.2007.05.008
  • Janssen, J.A., et al., 2009. Delineating the model-stakeholder gap: framing perceptions to analyse the information requirement in river management. Water resources management, 23, 1423–1445. doi: 10.1007/s11269-008-9334-9
  • Jun, W., et al., 2016. Bayesian theory based self-adapting real-time correction model for flood forecasting. Water, 8 (75), 1–16.
  • Karsznia, K., 2008. Koncepcja pomiaru i wyrównania przestrzennych ciągów tachimetrycznych w zastosowaniach geodezji zintegrowanej. Acta Scientiarum Polonorum Geodesia et Descriptio Terrarum, 7 (1), 35–46.
  • Kuenzer, C., et al., 2013. Flood mapping and flood dynamics of the Mekong delta: ENVISAT-ASAR-WSM based time series analyses. Remote sensing, 5, 687–715. doi:10.3390/rs5020687.
  • Kvočka, D.A.R., Ahmadian, R., and Falconer, R.A., 2017. Flood inundation modelling of flash floods in steep river basins and catchments. Water, 9., doi: 10.3390/w9090705
  • Liu, C.-C., et al., 2018. Flood prevention and emergency response system. Powered by Google Earth Engine. Remote sensing, 10, 1283. doi:10.3390/rs10081283.
  • Lu, C., et al., 2018. Real-time tropospheric delay retrieval from multi-GNSS PPP ambiguity resolution: validation with final troposphere products and a numerical weather model. Remote sensing, 10 (10), 481. doi: 10.3390/rs10030481
  • Mekik, C., and Arslanoglu, M., 2009. Investigation on accuracies of real time kinematic GPS for GIS applications. Remote sensing, 1, 22–35. doi: 10.3390/rs1010022
  • Mika, M., and Siejka, M., 2014. Wykorzystanie zintegrowanych technik geodezyjnych do celów wstępnej oceny ryzyka powodziowego. Acta Scientarum Polonorum Formatio Circumiectus, 13 (4), 175–184. doi: 10.15576/ASP.FC/2014.13.4.175
  • Ney, B. 1976. Statistical methods in geodesy. (Metody statystyczne w geodezji.) AGH University of Science and Technology Publisher (Wydawnictwo Akademii Górniczo-Hutniczej im. Stanisława Staszica w Krakowie), Krakow, Poland.
  • Notti, D., et al., 2018. Potential and limitations of open satellite data for flood mapping. Remote sensing, 10, 1673. doi:10.3390/rs10111673.
  • Noureldin, A., et al., 2012. Accuracy enhancement of inertial sensors utilizing high resolution spectral analysis. Sensors, 12, 11638–11660. doi: 10.3390/s120911638
  • Rivas Casado, M., et al., 2018. The use of unmanned aerial vehicles to estimate direct tangible losses to residential properties from flood events: a case study of cockermouth following the desmond storm. Remote sensing, 10, 1548. doi:10.3390/rs10101548.
  • Siejka, Z., 2018. Validation of the accuracy and convergence time of real time kinematic results using a single galileo navigation system. Sensors, 18 (8), 2412. doi:10.3390/s18082412.
  • Sola-Guirado, R.R., et al., 2018. Assessment of the accuracy of a multi-beam LED scanner sensor for measuring olive canopies. Sensors, 18, 4406. doi: 10.3390/s18124406
  • Timmerman, J., et al., 2010. A methodology to bridge the water information gap. Water science and technology, 62, 2419–2426. doi: 10.2166/wst.2010.513
  • Todini, E., 2008. A model conditional processor to assess predictive uncertainty in flood forecasting. International journal of river basin management, 6, 123–137. doi: 10.1080/15715124.2008.9635342
  • Volk, W., 1973. Statistics used for engineers. (Statystyka stosowana dla inżynierów). Warsaw: Scientific and Technical Publisher (Wydawnictwo Naukowo – Techniczne).
  • Wood, M., et al., 2012. Flood risk management: U.S. army corps of engineers and layperson perceptions. Risk analysis, 32, 1349–1368. doi: 10.1111/j.1539-6924.2012.01832.x
  • Xu, X., et al., 2018. Long-term changes in water clarity in Lake Liangzi determined by remote sensing. Remote sensing, 10, 1441. doi:10.3390/rs10091441.
  • Zazo, S., et al., 2018. Flood hazard assessment supported by reduced cost aerial precision photogrammetry. Remote sensing, 10, 1566. doi:10.3390/rs10101566.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.