262
Views
8
CrossRef citations to date
0
Altmetric
Articles

A high-resolution gravimetric geoid model for Kingdom of Saudi Arabia

ORCID Icon &
Pages 375-390 | Received 03 Nov 2020, Accepted 14 Jun 2021, Published online: 29 Jun 2021

References

  • Abdalla, A., and Mogren, S., 2015. Implementation of a rigorous least-squares modification of Stokes’ formula to compute a gravimetric geoid model over Saudi Arabia (SAGEO13). Canadian journal of earth sciences, 52 (10), 823–832.
  • Alothman, A.O., 2020. Computation of a gravimetric geoid within the Kingdom of Saudi Arabia (KSA) by least-squares collocation. Arabian journal for science and engineering, 45 (1), 381–389.
  • Alothman, A., and Elsaka, B. 2016. First release of gravimetric geoid model over Saudi Arabia based on terrestrial gravity and GOCE satellite data: KSAG01, EGUGA, pp. EPSC2016-1305.
  • Andersen, O. B. and Knudsen, P., 2019. The DTU17 global marine gravity field: First validation results. In: S. Mertikas, R. Pail, (eds). Fiducial reference measurements for altimetry. vol 150. International Association of Geodesy Symposia: Springer, 83–87. doi:10.1007/1345_2019_65
  • Andersen, O., Knudsen, P., and Stenseng, L., 2015. The DTU13 MSS (mean sea surface) and MDT (mean dynamic topography) from 20 years of satellite altimetry. In: S. Jin, R. Barzaghi (eds). IGFS 2014. vol 144. Cham: International Association of Geodesy Symposia, Springer. 111–121. doi:10.1007/1345_2015_182
  • Andersen, O., Knudsen, P., and Stenseng, L. 2018. A new DTU18 MSS mean sea surface–Improvement from SAR altimetry. In: 25 years of progress in radar altimetry symposium.
  • Brockmann, J.M., et al., 2014. EGM_TIM_RL05: An independent geoid with centimeter accuracy purely based on the GOCE mission. Geophysical research letters, 41 (22), 8089–8099.
  • Bruinsma, S.L., et al., 2013. The new ESA satellite-only gravity field model via the direct approach. Geophysical research letters, 40 (14), 3607–3612.
  • El-Ashquer, M., et al., 2020. Study on the selection of optimal global geopotential models for geoid determination in Kuwait. Survey review, 52 (373), 373–382.
  • Erol, B. 2007. Investigations on local geoids for geodetic applications. Thesis (PhD). İstanbul Technical University.
  • Farr, T.G., et al., 2007. The shuttle radar topography mission. Reviews of geophysics, 45, 2.
  • Flury, J., and Rummel, R., 2009. On the geoid–quasigeoid separation in mountain areas. Journal of geodesy, 83 (9), 829–847. doi:10.1007/s00190-009-0302-9.
  • Foroughi, I., and Tenzer, R., 2017. Comparison of different methods for estimating the geoid-to-quasi-geoid separation. Geophysical journal international, 210 (2), 1001–1020.
  • Forsberg, R. 1984. A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling. Ohio State University. Dept of Geodetic Science and Surveying. Report No. OSU/DGSS-355.
  • Forsberg, R., et al. 2015. Geoid of Saudi Arabia (KSA geoid) from surface and satellite alltimetry gravity, IUGG XXVI General Assembly. Prague.
  • Forsberg, R., and Sideris, M.G., 1993. Geoid computations by the multi-band spherical FFT approach. Manuscripta geodaetica, 18, 82.
  • Forsberg, R., and Tscherning, C. 2008. An overview manual for the GRAVSOFT geodetic gravity field modelling programs, 2nd ed. Contract report for JUPEM.
  • Förste, C., et al. 2015. R. Biancale, 2014, EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services. In: EGU General Assembly Conference Abstracts.
  • Fotopoulos, G. 2003. An analysis on the optimal combination of geoid, orthometric and ellipsoidal height data. Thesis (PhD).University of Calgary.
  • Geisser, S., and Eddy, W.F., 1979. A predictive approach to model selection. Journal of the American statistical association, 74 (365), 153–160.
  • Haagmans, R., 1993. Fast evaluation of convolution integrals on the sphere using 1D FFT and a comparison with existing methods of Stokes’ integral, Manuscript geodynamics, 18, pp. 227–241.
  • Heiskanen, W.A., and Moritz, H. 1967. Physical geodesy (Book on physical geodesy covering potential theory, gravity fields, gravimetric and astrogeodetic methods, statistical analysis, etc).
  • Hofmann-Wellenhof, B., and Moritz, H. 2006. Physical geodesy. Springer Science and Business Media.
  • Kaloop, M.R., et al., 2018. Using advanced soft computing techniques for regional shoreline geoid model estimation and evaluation. Marine georesources geotechnology, 36 (6), 688–697.
  • Kaloop, M.R., et al., 2020. Optimizing local geoid undulation model using GPS/levelling measurements and heuristic regression approaches. Survey review, 52 (375), 544–554.
  • Kingdon, R. 2014. Confidential Technical Report : Preliminary Saudi geoid based on land gravity, Fugro EarthData Inc.
  • Kvas, A., et al. 2019. The combined satellite-only gravity field model GOCO06s. In: 27th IUGG General Assembly.
  • Miller, C.H., et al. 1989. A gravity survey of parts of Quadrangles 26E, 26F, 27E, and 27F, Northeastern Arabian Shield, Kingdom of Saudi Arabia. US Geological Survey.
  • Mogren, S. 2004. Geophysical investigations on the Najd fault system. Thesis (PhD). University of Newcastle.
  • Mogren, S., et al. 2013. Quasi-geoid model for Saudi Arabia: application for levelling with GPS. Technical Report. Project no. 09-SPA873-02.
  • Moritz, H., 1978. Least-squares collocation. Reviews of geophysics, 16 (3), 421–430.
  • Olson, C.J., Becker, J.J., and Sandwell, D.T. 2014. A new global bathymetry map at 15 arcsecond resolution for resolving seafloor fabric: SRTM15_PLUS, AGUFM, 2014, pp. OS34A–03.
  • Pail, R., et al., 2018. Short note: the experimental geopotential model XGM2016. Journal of geodesy, 92 (4), 443–451.
  • Pavlis, N.K., et al. 2008. An Earth gravitational model to degree 2160: EGM2008. presented at the 2008 General Assembly of the European Geosciences Union, Vienna, Austria, April 13-18.
  • Pavlis, N.K., et al., 2012. The development and evaluation of the Earth gravitational model 2008 (EGM2008). Journal of geophysical research: solid earth, 117, 1–38. doi:10.1029/2011JB008916
  • Rexer, M., Hirt, C., and Pail, R. 2017. High-resolution global forward modelling: a degree-5480 global ellipsoidal topographic potential model, EGUGA, p. 7725.
  • Sandwell, D., et al., 2013. Toward 1-mGal accuracy in global marine gravity from CryoSat-2, Envisat, and Jason-1. The leading edge, 32 (8), 892–899.
  • Sandwell, D.T., et al., 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346 (6205), 65–67.
  • Sansò, F. and Sideris, M. G., 2013. Geoid determination: theory and methods. Berlin: Springer. 1–734.
  • Schwarz, K. P., 1984. Data types and their spectral properties, local gravity field approximation. Beijing: International Geoid Determination Summer School. 1–6.
  • Sjöberg, L.E., 2003. A computational scheme to model the geoid by the modified Stokes formula without gravity reductions. Journal of geodesy, 77 (7–8), 423–432.
  • Sjöberg, L.E., 2010. A strict formula for geoid-to-quasigeoid separation. Journal of geodesy, 84 (11), 699–702. doi:10.1007/s00190-010-0407-1.
  • Tenzer, R., et al., 2015. Spatial and spectral representations of the geoid-to-quasigeoid correction. Surveys in geophysics, 36 (5), 627–658. doi:10.1007/s10712-015-9337-z.
  • Torge, W. and Müller, J., 2012. Geodesy. 4th Edition Berlin: Walter de Gruyter. doi:10.1515/9783110250008
  • Wackernagel, H., 2013. Multivariate geostatistics: an introduction with applications. 3rd Edition Berlin: Springer. doi:10.1007/978-3-662-05294-5
  • Wong, L., and Gore, R., 1969. Accuracy of geoid heights from modified Stokes kernels. Geophysical journal international, 18 (1), 81–91.
  • Zaki, A., 2015. Assessment of GOCE models in Egypt. Master thesis, Faculty of engineering, Cairo University. doi:10.13140/RG.2.1.4357.9045
  • Zaki, A., et al., 2018. Comparison of satellite altimetric gravity and global geopotential models with shipborne gravity in the red sea. Marine geodesy, 41 (3), 258–269.
  • Zingerle, P., et al., 2020. The combined global gravity field model XGM2019e. Journal of geodesy, 94 (7), 66. doi:10.1007/s00190-020-01398-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.