252
Views
0
CrossRef citations to date
0
Altmetric
Articles

Assessing the performance of multi-GNSS precise point positioning technique on the geoid model validation

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 51-64 | Received 13 Mar 2022, Accepted 08 Jan 2023, Published online: 24 Jan 2023

References

  • Abd-Rabbou, M., El-Shazly, A., and Ahmed, K., 2018. Comparative analysis of multi constellation GNSS single frequency precise point positioning. Survey review, 50 (361), 373–382. doi:10.1080/00396265.2017.1296628.
  • Alcay, S., et al., 2019. Displacement monitoring performance of relative positioning and precise point positioning (PPP) methods using simulation apparatus. Advances in space research, 63 (5), 1697–1707. doi:10.1016/j.asr.2018.11.003.
  • Altamimi, Z., et al., 2016. ITRF2014: a new release of the international terrestrial reference frame modeling nonlinear station motions. Journal of geophysical research: solid earth, 121 (8), 6109–6131. doi:10.1002/2016JB013098.
  • Bahadur, B., and Nohutcu, M., 2018. PPPH: a MATLAB-based software for multi-GNSS precise point positioning analysis. GPS solutions, 22, 113. doi:10.1007/s10291-018-0777-z.
  • Bahadur, B., and Nohutcu, M., 2019. Comparative analysis of MGEX products for post-processing multi-GNSS PPP. Measurement, 145, 361–369. doi:10.1016/j.measurement.2019.05.094.
  • Barthelmes, F. 2013. Definition of functionals of the geopotential and their calculation from spherical harmonic models: theory and formulas used by the calculation service of the International Centre for Global Earth Models (ICGEM), http://icgem.gfz-potsdam.de/ICGEM/. Scientific Technical Report STR09/02 (Revised Edition), January 2013, GeoForschungZentrum Potsdam. Available from: doi:10.2312/GFZ.b103-0902-26.
  • Bingham, R.J., Haines, K., and Hughes, C.W., 2008. Calculating the ocean’s mean dynamic topography from a mean sea surface and a geoid. Journal of atmospheric and oceanic technology, 25, 1808–1822. doi:10.1175/2008JTECHO568.1.
  • Boehm, J., Werl, B., and Schuh, H., 2006. Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. Journal of geophysical research: solid earth, 111, B02406. doi:10.1029/2005JB003629.
  • Cai, C., et al., 2015. Precise point positioning with quad-constellations: GPS, BeiDou, GLONASS and Galileo. Advances in space research, 56 (1), 133–143. doi:10.1016/j.asr.2015.04.001.
  • Cai, C., and Gao, Y., 2013. Modeling and assessment of combined GPS/GLONASS precise point positioning. GPS solutions, 17 (2), 223–236. doi:10.1007/s10291-012-0273-9.
  • Featherstone, W.E., et al., 2011. The AUSGeoid09 model of the Australian height datum. Journal of geodesy, 85, 133–150. doi:10.1007/s00190-010-0422-2.
  • Featherstone, W.E., et al., 2018. The first Australian gravimetric quasigeoid model with location-specific uncertainty estimates. Journal of geodesy, 92, 149–168. doi:10.1007/s00190-017-1053-7.
  • Foroughi, I., et al., 2019. Sub-centimetre geoid. Journal of geodesy, 93, 849–868. doi:10.1007/s00190-018-1208-1.
  • Fotopoulos, G., 2005. Calibration of geoid error models via a combined adjustment of ellipsoidal, orthometric and gravimetric geoid height data. Journal of geodesy, 79, 111–123. doi:10.1007/s00190-005-0449-y.
  • Goudarzi, M.A., and Banville, S., 2018. Application of PPP with ambiguity resolution in earth surface deformation studies: a case study in eastern Canada. Survey review, 50 (363), 531–544. doi:10.1080/00396265.2017.1337951.
  • Goyal, R., et al., 2021. Empirical comparison between stochastic and deterministic modifiers over the French Auvergne geoid computation test-bed. Survey review, 54 (382), 57–69. doi:10.1080/00396265.2021.1871821.
  • Heiskanen, W.A., and Moritz, H., 1967. Physical geodesy. San Francisco: WH Freeman and Company.
  • Herring, T.A., et al. 2018. GPS Analysis at MIT. GAMIT/GLOBK Release 10.7, Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology.
  • Hirt, C., et al., 2014. Study of Earth’s short-scale gravity field using the high-resolution SRTM topography model. Computers & geosciences, 73, 71–80. doi:10.1016/j.cageo.2014.09.00.
  • Jamieson, M., and Gillins, D.T., 2018. Comparative analysis of online static GNSS postprocessing services. Journal of surveying engineering, 144 (4), 05018002. doi:10.1061/(ASCE)SU.1943-5428.0000256.
  • Kearsley, A.H.W., Ahmad, Z., and Chan, A., 1993. National height datums, levelling, GPS heights and geoids. Australian journal of geodesy, photogrammetry, and surveying, 59, 53–88.
  • Kiliçoğlu, A., et al., 2011. Regional gravimetric quasi-geoid model and transformation surface to national height system for Turkey (THG-09). Studia geophysica et geodaetica, 55 (4), 557. doi:10.1007/s11200-010-9023-z.
  • Knudsen, P., et al., 2011. A global mean dynamic topography and ocean circulation estimation using a preliminary GOCE gravity model. Journal of geodesy, 85, 861–879. doi:10.1007/s00190-011-0485-8.
  • Kouba, J., 2003. Measuring seismic waves induced by large earthquakes with GPS. Studia geophysica et geodaetica, 47 (4), 741–755. doi:10.1023/A:1026390618355.
  • Kouba, J. 2015. A guide to using International GNSS Service (IGS) products. Available from: http://kb.igs.org/hc/en-us/articles/201271873-A-Guide-to-Usingthe-IGS-Products.
  • Kouba, J., and Héroux, P., 2001. Precise point positioning using IGS orbit and clock products. GPS solutions, 5 (2), 12–28. doi:10.1007/PL00012883.
  • Kvas, A., et al., 2021. GOCO06s – a satellite-only global gravity field model. Earth system science data, 13, 99–118. doi:10.5194/essd-13-99-2021.
  • Lagler, K., et al., 2013. GPT2: empirical slant delay model for radio space geodetic techniques. Geophysical research letters, 40 (6), 1069–1073. doi:10.1002/grl.50288.
  • Landskron, D., and Böhm, J., 2018. VMF3/GPT3: refined discrete and empirical troposphere mapping functions. Journal of geodesy, 92, 349–360. doi:10.1007/s00190-017-1066-2.
  • Li, X., et al., 2015. Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. Journal of geodesy, 89 (6), 607–635. doi:10.1007/s00190-015-0802-8.
  • Liang, W., et al., 2020. A new method of improving global geopotential models regionally using GNSS/levelling data. Geophysical journal international, 221 (1), 542–549. doi:10.1093/gji/ggaa047.
  • Lu, C., et al., 2016. Estimation and evaluation of real-time precipitable water vapor from GLONASS and GPS. GPS solutions, 20 (4), 703–713. doi:10.1007/s10291-015-0479-8.
  • Lyard, F., et al., 2006. Modelling the global ocean tides: modern insights from FES2004. Ocean dynamics, 56 (5), 394–415. doi:10.1007/s10236-006-0086-x.
  • Martinec, Z., 1998. Boundary-value problems for gravimetric determination of a precise geoid. Berlin, Heidelberg: Springer. doi:10.1007/BFb0010337.
  • Molodensky, M.S., Eremeev, V.F., and Yurkina, M.I., 1962. Methods for study of the external gravitational field and figure of the Earth. Jerusalem: Israeli Programme for the Translation of Scientific Publications.
  • Moritz, H., 1980. Advanced physical geodesy. Karlsruhe: H Whicman Verlag.
  • Pan, Z., Chai, H., and Kong, Y., 2017. Integrating multi-GNSS to improve the performance of precise point positioning. Advances in space research, 60 (12), 2596–2606. doi:10.1016/j.asr.2017.01.014.
  • Paziewski, J., Sieradzki, R., and Baryla, R., 2018. Multi-GNSS high-rate RTK, PPP and novel direct phase observation processing method: application to precise dynamic displacement detection. Measurement science and technology, 29 (035002), 893–904. doi:10.1088/1361-6501/aa9ec2.
  • Petit, G., and Luzum, B., 2010. IERS conventions 2010, IERS Techn. Note 36. Frankfurt am Main, Germany: Verlagdes Bundesamts für Kartographie und Geodäsie. ISBN 3-89888-989-6.
  • Poluzzi, L., et al., 2021. Impact of multiconstellation on relative static GNSS positioning. Journal of surveying engineering, 147, 2. doi:10.1061/(asce)su.1943-5428.0000351.
  • Rapp, R.H., 1989. The treatment of permanent tidal effects in the analysis of satellite altimeter data for sea surface topography. Manuscr. geod, 14 (6), 368–372.
  • Saastamoinen, J., 1972. Contributions to the theory of atmospheric refraction. Bulletin géodésique, 105, 279–298. doi:10.1007/BF02521844.
  • Sansó, F., and Rummel, R., 1997. Geodetic boundary value problems in view of the one centimeter geoid. Berlin, Heidelberg: Springer. doi:10.1007/BFb0011699.
  • Simav, M., and Yıldız, H., 2019. Evaluation of EGM2008 and latest GOCE-based satellite only global gravity field models using densified gravity network: A case study in south-western Turkey. Bollettino di Geofisica Teorica ed Applicata, 60 (1), 49–68. doi:10.4430/bgta0255.
  • Sjöberg, L.E., 2003. A general model for modifying stokes’ formula and its least squares solution. Journal of geodesy, 77, 459–464. doi:10.1007/s00190-003-0346-1.
  • Smith, D.A. 1998. There is no such thing as The EGM96 geoid: subtle points on the use of a global geopotential model, IGeS Bulletin No. 8, International Geoid Service, Milan, Italy, p. 17–28.
  • Stokes, G.G., 1849. On the variation of gravity at the surface of the Earth. Transactions of the Cambridge philosophical society, 672–695.
  • Teunissen, P.J.G., and Montenbruck, O., 2017. Springer handbook of global navigation satellite systems. Cham: Springer International Publishing.
  • Tregoning, P., and van Dam, T., 2005. Atmospheric pressure loading corrections applied to GPS data at the observation level. Geophysical research letters, 32, L22310. doi:10.1029/2005GL024104.
  • Wang, Y.M., et al., 2021. Colorado geoid computation experiment: overview and summary. Journal of geodesy, 95, 127. doi:10.1007/s00190-021-01567-9.
  • Wu, J., et al., 1993. Effects of antenna orientation on GPS carrier phase. Manuscripta geodaetica, 18 (2), 91–98.
  • Xu, P., et al., 2013. High-rate precise point positioning (PPP) to measure seismic wave motions: an experimental comparison of GPS PPP with inertial measurement units. Journal of geodesy, 87 (4), 741–755. doi:10.1007/s00190-012-0606-z.
  • Xu, P., et al., 2019. A large scale of apparent sudden movements in Japan detected by high-rate GPS after the 2011 tohoku Mw9. 0 earthquake: physical signals or unidentified artifacts? Earth, planets and space, 71 (1), 43. doi:10.1186/s40623-019-1023-9.
  • Yigit, C.O., and Gurlek, E., 2017. Experimental testing of high-rate GNSS precise point positioning (PPP) method for detecting dynamic vertical displacement response of engineering structures. Geomatics, natural hazards and risk, 8 (2), 893–904. doi:10.1080/19475705.2017.1284160.
  • Yıldız, H., et al., 2021. Determination and validation of the Turkish Geoid-2020 (TG-20). Bollettino di geofisica teorica ed applicata, 62 (3), 495–512. doi:10.4430/bgta0346.
  • Zhang, B., et al., 2018. Joint estimation of vertical total electron content (VTEC) and satellite differential code biases (SDCBs) using low-cost receivers. Journal of geodesy, 92 (4), 401–413. doi:10.1007/s00190-017-1071-5.
  • Zhou, F., et al., 2018. GAMP: An open-source software of multi-GNSS precise point positioning using undifferenced and uncombined observations. GPS Solutions, 22 (2), 1–10. doi:10.1007/s10291-018-0699-9.
  • Zingerle, P., et al., 2020. The combined global gravity field model XGM2019e. Journal of geodesy, 94 (7), 1–12. doi:10.1007/s00190-020-01398-0.
  • Zumberge, J., et al., 1997. Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of geophysical research: solid earth, 102 (B3), 5005–5017. https://doi.org/10.1029/96JB03860.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.