173
Views
0
CrossRef citations to date
0
Altmetric
Articles

Partial ambiguity resolution considering the multipath effects in a canyon environment

, ORCID Icon, , &
Pages 300-315 | Received 02 Feb 2023, Accepted 28 Jul 2023, Published online: 08 Aug 2023

References

  • Brunner, F., Hartinger, H., and Troyer, L., 1999. GPS signal diffraction modelling: the stochastic SIGMA-Δ model. Journal of geodesy, 73, 259–267. doi: 10.1007/s001900050242
  • Castro-Arvizu, J.M., et al., 2021. Precision-aided partial ambiguity resolution scheme for instantaneous RTK positioning. Remote sensing, 13, 2904. doi: 10.3390/rs13152904
  • Chai, D., et al., 2018. A new single-epoch method for resolving GNSS ambiguity with segmented search in short baseline. Advances in space research, 62, 30–43. doi: 10.1016/j.asr.2018.03.038
  • Dai, L.L., et al., 2011. Partial search carrier-phase integer ambiguity resolution.
  • Deng, J. and Wang, S.L., 2015. Divisional ambiguity resolution for long range reference stations in network RTK. Survey review, 47, 272–278. doi: 10.1179/1752270614Y.0000000123
  • Dong, B. and Liu, H., 2017. A new RTK ambiguity resolution method. In: J. Sun, et al., eds. China satellite navigation conference (CSNC) 2017 proceedings: volume III. Singapore: Springer, 229–237.
  • Edwards, S., et al., 1999. A methodology for benchmarking real time kinematic GPS. Survey review, 35, 163–174. doi: 10.1179/sre.1999.35.273.163
  • Euler, H.-J. and Schaffrin, B., 1991. On a measure for the discernibility between different ambiguity solutions in the static-kinematic GPS-mode. In: K.-P. Schwarz and G. Lachapelle, eds. Kinematic systems in geodesy, surveying, and remote sensing. New York: Springer, 285–295.
  • Feng, Y., 2008. GNSS three carrier ambiguity resolution using ionosphere-reduced virtual signals. Journal of geodesy, 82, 847–862. doi: 10.1007/s00190-008-0209-x
  • Gao, W., Gao, C., and Pan, S., 2017. A method of GPS/BDS/GLONASS combined RTK positioning for middle-long baseline with partial ambiguity resolution. Survey review, 49, 212–220. doi: 10.1179/1752270615Y.0000000047
  • Han, H., et al., 2017. Reliable partial ambiguity resolution for single-frequency GPS/BDS and INS integration. GPS solutions, 21, 251–264. doi: 10.1007/s10291-016-0519-z
  • Hartinger, H. and Brunner, F., 1999. Variances of GPS phase observations: the SIGMA-ε model. GPS solutions, 2, 35–43. doi: 10.1007/PL00012765
  • Hofmann-Wellenhof, B., Lichtenegger, H., and Collins, J., 2012. Global positioning system: theory and practice. Vienna: Springer Science & Business Media.
  • Hou, Y. and Verhagen, S., 2014. Model and data driven partial ambiguity resolution for multi-constellation GNSS. In: J. Sun, et al., eds. China satellite navigation conference (CSNC) 2014 proceedings: volume II. Berlin: Springer, 285–302.
  • Hou, Y., Verhagen, S., and Wu, J., 2016. A data driven partial ambiguity resolution: two step success rate criterion, and its simulation demonstration. Advances in space research, 58, 2435–2452. doi: 10.1016/j.asr.2016.07.029
  • Lau, L. and Cross, P., 2007. Investigations into phase multipath mitigation techniques for high precision positioning in difficult environments. Journal of navigation, 60, 457–482. doi: 10.1017/S0373463307004341
  • Li, B., et al., 2014. GNSS ambiguity resolution with controllable failure rate for long baseline network RTK. Journal of geodesy, 88, 99–112. doi: 10.1007/s00190-013-0670-z
  • Li, J., et al., 2015. GNSS multi-carrier fast partial ambiguity resolution strategy tested with real BDS/GPS dual- and triple-frequency observations. GPS solutions, 19, 5–13. doi: 10.1007/s10291-013-0360-6
  • Li, B., et al., 2018. A procedure for the significance testing of unmodeled errors in GNSS observations. Journal of geodesy, 92, 1171–1186. doi: 10.1007/s00190-018-1111-9
  • Li, H., et al., 2021. A novel partial ambiguity method for multi-GNSS real-time kinematic positioning. Journal of navigation, 75, 540–553. doi: 10.1017/S037346332100059X
  • Li, Z., et al., 2022. A sequential ambiguity selection strategy for partial ambiguity resolution during RTK positioning in urban areas. GPS solutions, 26, 92. doi: 10.1007/s10291-022-01279-3
  • Li, B., Feng, Y., and Shen, Y., 2010. Three carrier ambiguity resolution: distance-independent performance demonstrated using semi-generated triple frequency GPS signals. GPS solutions, 14, 177–184. doi: 10.1007/s10291-009-0131-6
  • Li, B. and Teunissen, P.J.G., 2014. GNSS antenna array-aided CORS ambiguity resolution. Journal of geodesy, 88, 363–376. doi: 10.1007/s00190-013-0688-2
  • Liu, X., et al., 2022. A novel partial ambiguity resolution based on ambiguity dilution of precision- and convex-hull-based satellite selection for instantaneous multiple global navigation satellite systems positioning. Journal of navigation, 75, 832–848. doi: 10.1017/S0373463322000017
  • Lu, L., et al., 2019. A triple checked partial ambiguity resolution for GPS/BDS RTK positioning. Sensors, 19, 5034. doi: 10.3390/s19225034
  • Luo, X., et al., 2014. A realistic and easy-to-implement weighting model for GPS phase observations. IEEE transactions on geoscience and remote sensing, 52, 6110–6118. doi: 10.1109/TGRS.2013.2294946
  • Miao, W., et al., 2020. Combined BeiDou-2 and BeiDou-3 instantaneous RTK positioning: stochastic modeling and positioning performance assessment. Journal of spatial science, 65, 7–24. doi: 10.1080/14498596.2019.1642250
  • Mowlam, A., 2004. Baseline precision results using triple frequency partial ambiguity sets. In: Proceedings of the 17th international technical meeting of the satellite division of the institute of navigation (ION GNSS 2004). Long Beach, CA: Long Beach Convention Center, 2509–2518.
  • Parkins, A., 2011. Increasing GNSS RTK availability with a new single-epoch batch partial ambiguity resolution algorithm. GPS solutions, 15, 391–402. doi: 10.1007/s10291-010-0198-0
  • Strode, P.R.R. and Groves, P.D., 2016. GNSS multipath detection using three-frequency signal-to-noise measurements. GPS solutions, 20, 399–412. doi: 10.1007/s10291-015-0449-1
  • Teunissen, P.J., 1994. A new method for fast carrier phase ambiguity estimation. In: Proceedings of 1994 IEEE position, location and navigation symposium-PLANS’94. Las Vegas, NV: IEEE, 562–573.
  • Teunissen, P.J.G., 1995. The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. Journal of geodesy, 70, 65–82. doi: 10.1007/BF00863419
  • Teunissen, P., 1997. A canonical theory for short GPS baselines. Part IV: precision versus reliability. Journal of geodesy, 71, 513–525. doi: 10.1007/s001900050119
  • Teunissen, P.J., 1999. An optimality property of the integer least-squares estimator. Journal of geodesy, 73, 587–593. doi: 10.1007/s001900050269
  • Teunissen, P., Joosten, P., and Tiberius, C., 1999. Geometry-free ambiguity success rates in case of partial fixing. In: Proceedings of the 1999 national technical meeting of the institute of navigation. San Diego, CA, 201–207.
  • Teunissen, P.J. and Verhagen, S., 2004. On the foundation of the popular ratio test for GNSS ambiguity resolution. In: Proceedings of the 17th international technical meeting of the satellite division of the institute of navigation (ION GNSS 2004). Long Beach, CA: Long Beach Convention Center, 2529–2540.
  • Teunissen, P. and Verhagen, S., 2009. GNSS carrier phase ambiguity resolution: challenges and open problems. In: M.G. Sideris, ed. Observing our changing earth. Berlin: Springer, 785–792.
  • Verhagen, S. and Teunissen, P.J., 2013. The ratio test for future GNSS ambiguity resolution. GPS solutions, 17, 535–548. doi: 10.1007/s10291-012-0299-z
  • Wang, S., et al., 2016. Three-step algorithm for rapid ambiguity resolution between reference stations within network RTK. Journal of navigation, 69, 1310–1324. doi: 10.1017/S037346331600031X
  • Wieser, A. and Brunner, F.K., 2000. An extended weight model for GPS phase observations. Earth, planets and space, 52, 777–782. doi: 10.1186/BF03352281
  • Xi, R., et al., 2018. Rapid initialization method in real-time deformation monitoring of bridges with triple-frequency BDS and GPS measurements. Advances in space research, 62, 976–989. doi: 10.1016/j.asr.2018.06.018
  • Xu, P., Shi, C., and Liu, J., 2012. Integer estimation methods for GPS ambiguity resolution: an applications oriented review and improvement. Survey review, 44, 59–71. doi: 10.1179/1752270611Y.0000000004
  • Zhang, Z., et al., 2019. Real-time carrier phase multipath detection based on dual-frequency C/N0 data. GPS solutions, 23, 7. doi: 10.1007/s10291-018-0799-6
  • Zhang, Z., et al., 2022. A composite stochastic model considering the terrain topography for real-time GNSS monitoring in canyon environments. Journal of geodesy, 96, 79. doi: 10.1007/s00190-022-01660-7
  • Zhodzishsky, M., et al., 1998. Real-time kinematic (RTK) processing for dual-frequency GPS/GLONASS. In: Proceedings of the 11th international technical meeting of the satellite division of the institute of navigation (ION GPS 1998). Nashville, TN, 1325–1331.
  • Zhong, P., et al., 2008. Adaptive wavelet transform based on cross-validation method and its application to GPS multipath mitigation. GPS solutions, 12, 109–117. doi: 10.1007/s10291-007-0071-y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.