Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 39, 2009 - Issue 4
333
Views
50
CrossRef citations to date
0
Altmetric
Original Articles

Zirconium Tetrakis(dodecyl Sulfate) [Zr(DS)4] as an Efficient Lewis Acid–Surfactant Combined Catalyst for the Synthesis of Quinoxaline Derivatives in Aqueous Media

, , &
Pages 569-579 | Received 06 Aug 2008, Published online: 27 Jan 2009

REFERENCES

  • (a) Grieco , P. A. Organic Synthesis in Water ; Blackie Academic and Professional : London , 1998 ; (b) Anastas , P. T. ; Williamson , T. C. (Eds). Green Chemistry ( ACS Symposium Series 626 ), American Chemical Society : Washington , DC , 1996 ; (c) Li , C.-J. ; Chan , T.-H. Organic Reactions in Aqueous Media ; Wiley : New York , 1997 ; (d) Anastas , P. ; Warner , J. C. Green Chemistry: Theory and Practice ; Oxford University Press, Oxford , 1998 ; (e) Li , C.-J. Organic reactions in aqueous media with a focus on carbon–carbon bond formations: A decade update . Chem. Rev . 2005 , 105 , 3095 – 3165 .
  • (a) Kobayashi , S. ; Manabe , K. ; Nagayama , S. Modern Carbonyl Chemistry ; J. Otera (Ed.); Wiley-VCH : Weinheim , 2000; (b) Manabe , K. ; Mori , Y. ; Wakabayashi , T. ; Nagayama , S. ; Kobayashi , S. Organic synthesis inside particles in water: Lewis acid–surfactant combined catalysts for organic reactions in water using colloidal dispersions as reaction media. J. Am. Chem. Soc. 2000, 122, 7202–7207; (c) Kobayashi , S. ; Nagayama , S. ; Busujima , T. Lewis acid catalysts stable in water: Correlation between catalytic activity in water and hydrolysis constants and exchange rate constants for substitution of inner-sphere water ligands. J. Am. Chem. Soc. 1998, 120, 8287–8288.
  • (a) Mnabe , K. ; Aoyama , N. ; Kobayashi , S. Friedel-Crafts-type Conjugate addition of indoles using a Lewis acid–surfactant combined catalyst in water . Adv. Synth. Catal. 2001 , 343 , 174 – 176 ; (b) Mori , Y. ; Kakumoto , K. ; Manabe , K. ; Kobayashi , S. Michael reactions in water using Lewis acid–surfactant combined catalysts . Tetrahedron Lett. 2000 , 41 , 3107 – 3111 .
  • (a) Firouzabadi , H. ; Iranpoor , N. ; Nowrouzi , F. The facile and efficient Michael addition of indoles and pyrrole to α,ß-unsaturated electron-deficient compounds catalyzed by aluminium dodecyl sulfate trihydrate [Al(DS)3]·3H2O in water . Chem.Commun. 2005 , 789 – 791 ; (b) Firouzabadi , H. ; Iranpoor , N. ; Khoshnood , A. Aluminum tris(dodecyl sulfate) trihydrate Al(DS)3·3H2O as an efficient Lewis acid–surfactant combined catalyst for organic reactions in water: Efficient conversion of epoxides to thiiranes and to amino alcohols at room temperature . J.Mol.Cat.A:Chem. 2007 , 274 , 109 – 115 .
  • Zolfigol , M. A. ; Salehi , P. ; Ghaderi , A. ; Shiri , M. ; Tanbakouchian , Z. An eco-friendly procedure for the synthesis of polysubstituted quinolines under aqueous media . J. Mol. Cat. A: Chem. 2006 , 259 , 253 – 258 .
  • (a) Brock , E. D. ; Lewis , D. M. ; Yousaf , T. I. ; Harper , H. H. Reactive dyes and their use. WO 9951688, 1999 ; (b) Thomas , K. R. ; Marappan , V. ; Jiann , T. L. ; Chang-Hao , C. ; Yu-ai , T. Chromophore-labeled quinoxaline derivatives as efficient electroluminescent materials . Chem. Mater. 2005 , 17 , 1860 – 1866 ; (c) Dailey , S. ; Feast , J. W. ; Peace , R. J. ; Saga , R. C. ; Till , S. ; Wood , E. L. Synthesis and device characterisation of side-chain polymer electron transport materials for organic semiconductor applications . J. Mater. Chem. 2001 , 11 , 2238 – 2243 ; (d) Jonathan , L. S. ; Hiromitsu , M. ; Toshisha , M. ; Vincent , M. L. ; Hiroyuki , F. Quinoxaline-oligopyrroles: Improved pyrrole-based anion receptors . Chem. Commun. 2002 , 862 – 863 .
  • Hui , X. ; Desrivot , J. ; Bories , C. ; Loiseau , P. M. ; Franck , X. ; Hocquemiller , R. ; Figadere , B. Synthesis and antiprotozoal activity of some new synthetic substituted quinoxalines . Bioorg. Med. Chem. Lett. 2006 , 16 , 815 – 820 ; (b) Dell , A. ; William , D. H. ; Morris , H. R. ; Smith , G. A. ; Feeney , J. Roberts , G. C. K. Structure revision of the antibiotic echinomycin . J. Am. Chem. Soc. 1975 , 97 , 2497 – 2502 ; (c) Jaso , A. ; Zarranz , B. ; Aldana , I. ; Monge , A. Synthesis of new quinoxaline-2-carboxylate1, 4-dioxide derivatives as anti-Mycobacterium tuberculosis agents . J. Med. Chem. 2005 , 48 , 2019 – 2025 ; (d) Aguirre , G. ; Cerecetto , H. ; DiMaio , R. ; Gonzales , M. ; Alfaro , M. E. M. A. ; Jaso , A. ; Zarranz , B. ; Ortega , M. A. ; Aldana , I. ; Monge-Vega , A. Quinoxaline N,N′-dioxide derivatives and related compounds as growth in hibitors of Trypanosoma cruzi: Structure–activity relationships . Bioorg. Med. Chem. Lett. 2004 , 14 , 3835 – 3839 ; (e) Gali-Muhtasib , H. U. ; Diab-Assaf , M. ; Haddadin , M. J. Quinoxaline 1,4-dioxides induce G2/M cell cycle arrest and apoptosis in human colon cancer cells . Cancer Chemoth. Pharm. 2005 , 55 , 369 – 378 ; (f) Toshima , K. ; Ozawa , T. ; Kimura , T. ; Matsumara , S. The significant effect of the carbohydrate structures on the DNA photocleavage of the quinoxaline-carbohydrate hybrids . Bioorg. Med. Chem. Lett. 2004 , 14 , 2777 – 2779 .
  • (a) Venkatesh , C. ; Singh , B. ; Mahata , P. K. ; Ila , H. ; Junjappa , H. Heteroannulation of nitroketene N,S-arylaminoacetals with POCl3: A novel highly regioselective synthesis of unsymmetrical 2,3-substituted quinoxalines . Org. Lett. 2005 , 7 , 2169 – 2172 ; (b) Xekoukoulotakis , N. P. ; Hadjiantonious-Maroulis , C. P. ; Maroulis , A. J. Synthesis of quinoxalines by cyclization of α-arylimino oximes of a-dicarbonyl compounds . Tetrahedron Lett. 2000 , 41 , 10299 – 10302 ; (c) Antoniotti , S. ; Duñach , E. Direct and catalytic synthesis of quinoxaline derivatives from epoxides and ene-1,2-diamines . TetrahedronLett. 2002 , 43 , 3971 – 3973 ; (d) Robinson , R. S. ; Taylor , R. J. K. Quinoxaline synthesis from α-hydroxy ketones via a tandem oxidation process using catalysed aerobic oxidation . Synlett 2005 , 1003 – 1005 ; (e) Gopaland , D. V. ; Subrahmanyam, M. Single-stepsynthesis of 2-methylquinoxaline from 1,2-phenylenediamine and 1,2-propanediol over modified HY zeolites . Catal. Commun. 2001 , 219 – 223 ; (f) Staszewska , A. ; Stefanowicz , P. ; Szewczuk , Z. Direct solid-phase synthesis of quinoxaline-containing peptides . Tetrahedron Lett. 2005 , 46 , 5525 – 5528 ; (g) Das , B. ; Venkateswarlu , K. ; Suneel , K. ; Majhi , A. An efficient and convenient protocol for the synthesis of quinoxalines and dihydropyrazines via cyclization–oxidation processes using HClO4·SiO2 as a heterogeneous recyclable catalyst . TetrahedronLett. 2007 , 48 , 5371 – 5374 .
  • (a) More , S. V. ; Sastry , M. N. V. ; Yao , C.-F. Cerium (IV) ammonium nitrate (CAN) as a catalyst in tap water: A simple, proficient and green approach for the synthesis of quinoxalines . Green Chem. 2006 , 8 , 91 – 95 ; (b) Bhosale , R. S. ; Sarda , S. R. ; Ardhapure , S. S. ; Jadhav , W. N. ; Bhusare , S. R. ; Pawar , R. P. An efficient protocol for the synthesis of quinoxaline derivatives at room temperature using molecular iodine as the catalyst . Tetra hedron Lett. 2005 , 46 , 7183 – 7186 ; (c) Darabi , H. R. ; Mohandessi , S. ; Aghapoor , K. ; Mohsenzadeh , F. A recyclable and highly effective sulfamic acid/MeOH catalytic system for the synthesis of quinoxalines at room temperature . Catal Commun. 2007 , 389 – 392 ; (d) Wang , L. ; Liu , J. ; Tian , H. ; Qian , C. Ytterbium triflate catalyzed heterocyclization of 1,2-phenylenediamines and alkyl oxalates under solvent-free conditions via Phillips reaction: A facile synthesis of quinoxaline-2,3-diones derivatives . Synth. Commun. 2004 , 34 , 1349 – 1357 ; (e) Hasaninejad , A. ; Zare , A. ; Mohammadizadeh , M. R. ; Shekouhy , M. Oxalic acid as an efficient, cheap, and reusable catalyst for the preparation of quinoxalines via condensation of 1,2-diamines with α-diketones at room temperature . Arkivoc 2008 , 8 , 28 – 35 ; (f) Heravi , M. M. ; Bakhtiari , K. ; Tehrani , M. H. ; Javadi , N. M. ; Oskooie , H. A. Facile synthesis of quinoxaline derivatives using o-iodoxybenzoic acid (IBX) at room temperature . Arkivoc 2006 , 16 , 16 – 22 ; (g) Heravi , M. M. ; Bakhtiari , K. ; Bamoharram , F. F. ; Tehrani , M. H. Wells– Dawson type heteropolyacid catalyzed synthesis of quinoxaline derivatives at room temperature . Monatsh. Chem. 2007 , 138 , 465 – 467 ; (h) Oskooie , H. A. ; Heravi , M. M. ; Bakhtiari , K. ; Taheri , S. An efficient and facile synthesis of quinoxaline derivatives catalyzed by KHSO4 at room temperature . Monatsh. Chem. 2007 , 138 , 875 – 877 ; (i) Srinivas , C. ; Kumar , C. N. S. S. P. ; Rao , V. J. ; Palaniappan , S. Efficient, convenient and reusable polyaniline–sulfate salt catalyst for the synthesis of quinoxaline derivatives . J. Mol. Cat. A: Chem. 2006 , 265 , 228 – 231 .
  • Hasaninejad , A. ; Parhami , A. ; Zare , A. ; Khalafi-Nezhad , A. ; Nasrolahi Shirazi , A. ; Moosavi Zare , A. R. Magnesium sulfate as an efficient and very cheap reagent for the preparation of bis(indolyl)methanes . Polish J. Chem. 2008 , 82 , 565 – 569 ; (b) Zare , A. ; Hasaninejad , A. ; Khalafi-Nezhad , A. ; Parhami , A. ; Moosavi Zare , A. R. A Solvent less protocol for the Michael addition of aromatic amidest to α,β-unsaturated esters promoted by microwave irradiation . J. Iran. Chem. Soc. 2008 , 5 , 100 – 105 ; (c) Khalafi-Nezhad , A. ; Parhami , A. ; Zare , A. ; Moosavi Zare , A. R. ; Hasaninejad , A. ; Panahi , F. Trityl chloride as a novel and efficient organic catalyst for room temperature preparation of bis(indolyl)methanes under solvent-free conditions in neutral Media . Synthesis 2008 , 617 – 621 ; (d) Hasaninejad , A. ; Zare , A. ; Sharghi , H. ; Shekouhy, M. P2O5/SiO2: An efficient, green and heterogeneous catalytic system for the solvent-free synthesis of N-sulfonyl imines . Arkivoc 2008 , 11 , 64 – 74 ; (e) Zare , A. ; Hasaninejad , A. ; Beyzavi , M. H. ; Parhami , A. ; Moosavi Zare , A. R. ; Khalafi-Nezhad , A. ; Sharghi , H. Zinc oxide–tetrabutylammonium bromide tandem as a highly efficient, green, and reusable catalyst for Michael addition of pyrimidine and purine nucleobases to α,β-unsaturated esters under solvent-free conditions . Can. J. Chem. 2008 , 86 , 317 – 324 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.