Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 45, 2015 - Issue 3
977
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Green Process Development for the Synthesis of Aliphatic Symmetrical N,N′-Disubstituted Thiourea Derivatives in Aqueous Medium

, , , , &
Pages 376-385 | Received 11 Jul 2014, Published online: 13 Dec 2014

REFERENCES

  • Anastas, P. T.; Warner, J. C. In Green Chemistry: Theory and Practice; Oxford University Press: New York, 1998.
  • Poliakoff, M.; Licence, P. Sustainable technology: Green chemistry. Nature 2007, 450, 810–812.
  • Constable, D. J. C.; Dunn, P. J.; Hayler, J. D.; Humphrey, G. R.; Leazer, J. L.; Linderman, R. J.; Lorenz, K.; Manley, J.; Pearlman, B. A.; Wells, A.; Zaks, A.; Zhang, T. Y. Key green chemistry research areas: A perspective from pharmaceutical manufacturers. Green Chem. 2007, 9, 411–420.
  • (a) Daele, I. V.; Lehmann, H. M.; Froeyen, M.; Balzarini, J.; Calenbergh, S. V. Rational design of 5′-thiourea-substituted R-thymidine analogues as thymidine monophosphate kinase inhibitors capable of inhibiting mycobacterial growth. J. Med. Chem. 2007, 50, 5281–5292; (b) Krajacic, M. B.; Novak, P.; Dumic, M.; Cindric, M.; Paljetak, H. C.; Kujundzic, N. Novel ureas and thioureas of 15-membered azalides with antibacterial activity against key respiratory pathogens. Eur. J. Med. Chem. 2009, 44, 3459–3470.
  • (a) Krajacic, M. B.; Peric, M.; Smith, K. S.; Schonfeld, Z. I.; Ziher, D.; Fajdetic, A.; Kujundzic, N.; Schonfeld, W.; Landek, G.; Padovan, J.; Jelic, D.; Ager, A.; Milhous, W. K.; Ellis, W.; Spaventi, R.; Ohrt, C. Synthesis, structure–activity relationship, and antimalarial activity of ureas and thioureas of 15-membered azalides. J. Med. Chem. 2011, 54, 3595–3605; (b) Mahajan, A.; Yeh, S.; Nell, M.; Van Rensburg, C. E. J.; Chibale, K. Synthesis of new chloroquinolinyl thioureas and their biological investigation as potential antimalarial and anticancer agents. Bioorg. Med. Chem. Lett. 2007, 17, 5683–5685.
  • (a) Bloom, J. D.; DiGrandi, M. J.; Dushin, R. G.; Curran, K. J.; Ross, A. A.; Norton, E. B.; Terefenko, E.; Jones, T. R.; Feld, B.; Lang, S. A. Thiourea inhibitors of herpes viruses,part 1: Bis-(aryl)thiourea inhibitors of CMV. Bioorg. Med. Chem. Lett. 2003, 13, 2929–2932; (b) Kucukguzel, I.; Tatar, E.; Kucukguzel, S. G.; Rollas, S.; Clercq, E.D. Synthesis of some novel thiourea derivatives obtained from 5-[(4-aminophenoxy)methyl]-4-alkyl/aryl-2,4-dihydro-3H-1,2,4-triazole-3-thiones and evaluation as antiviral/anti-HIV and anti-tuberculosis agents. Eur. J. Med. Chem. 2008, 43, 381–392.
  • (a) Hallur, G.; Jimeno, A.; Dalrymple, S.; Zhu, T.; Jung, M. K.; Hidalgo, M.; Isaacs, J. T.; Sukumar, S.; Hamel, E.; Khan, S. R. Benzoylphenylurea sulfur analogues with potent antitumor activity. J. Med. Chem. 2006, 49, 2357–2360; (b) Sharma, S. K.; Wu, Y.; Steinbergs, N.; Crowley, M. L.; Hanson, A. S.; Casero, R. A.; Woster, P. M. (Bis)urea and (bis)thiourea inhibitors of lysine-specific demethylase 1 as epigenetic modulators. J.Med. Chem. 2010, 53, 5197–5212.
  • Liav, A.; Angala, S. K.; Brennan, P. J. N-Glycosyl-N′-[p-(isoamyloxy)phenyl]-thiourea derivatives: Potential anti-TB therapeutic agents. Synth. Commun. 2008, 38, 1176–1183.
  • Cikla, P.; Kucukguzel, S. G.; Kucukguzel, I.; Rollas, S.; Clercq, E. D.; Pannecouque, C.; Andrei, G. Snoeck, R.; Sahin, F.; Bayrak, O. F. Synthesis and evaluation of antiviral, antitubercular, and anticancer activities of some novel thioureas derived from 4-aminobenzohydrazidehydrazones. Marmara Pharmaceut. J. 2010, 14, 13–20.
  • Schroeder, D. C. Thioureas. Chem. Rev. 1955, 55, 181–228.
  • Mitchell, S. C.; Steventon, G. B. Thiourea and its biological interactions. Sulfur Rep. 1994, 16, 117–137.
  • Chalina, E. G.; Chakarova, L. Synthesis, hypotensive, and antiarrhythmic activities of 3-alkyl-l-(2-hydroxy-5,8-dimethoxy-l,2,3,4-tetrahydro-3-naphthalenyl)ureas or thioureas and their guanidine analogues. Eur. J. Med. Chem. 1998, 33, 975–983.
  • (a) Venkatachalam, T. K.; Sudbeck, E. A.; Mao, C.; Uckun, F. M. Anti-HIV of aromatic heterocyclicthiozolyl thiourea compounds. Bioorg. Med. Chem. Lett. 2001, 11, 523–528; (b) Venkatachalam, T. K.; Uckun, F. M. Synthesis of symmetrical and asymmetrical phenethyl thiourea compounds as non-nucleoside inhibitors of HIV-1 reverse transcriptase. Synth. Commun. 2005, 35, 2039–2056.
  • Tilley, J. W.; Levitan, P.; Kierstead, R. W. Antihypertensive (2-aminoethy1)thiourea derivatives. J. Med. Chem. 1980, 23, 1387–1392.
  • (a) Tobe, Y.; Sasaki, S. I.; Hirose, K.; Naemura, K. Novel self-assembly of m-xylylene type dithioureas. Tetrahedron Lett. 1997, 38, 4791–4794; (b) Smith, J.; Liras, J. L.; Schneider, S. E.; Anslyn, E. V. Solid and solution phase organic syntheses of oligomeric thioureas. J. Org. Chem. 1996, 61, 8811–8818.
  • (a) Mahajan, D. H.; Chikhalia, K. H.; Pannecouque, C.; Clercq, E. D. Synthesis and anti-HIV evaluation of new 2-thioxoimidazolidin-4-ones and their arylidine (styryl) derivatives. Pharmaceut. Chem. J. 2012, 46, 165–170; (b) Kidwai, M.; Venkataramanan, R.; Dave, B. Solventless synthesis of thiohydantoins over K2CO3. Green Chem. 2001, 3, 278–279; (c) Amosova, S. V.; Gavrilova, G. M.; Albanov, A. I. Reactions of 3,6-bis(vinylsulfonyl)-1,2,4,5-tetrafluorobenzene with thiosemicarbazide and thiourea. J. Sulfur Chem. 2004, 25, 269–274.
  • Donia, M.; Atia, A. A.; Heniesh, A. M. Efficient removal of Hg(II) using magnetic chelating resin derived from copolymerization of bisthiourea/thiourea/glutaraldehyde. Sep. Purif. Technol. 2008, 60, 46–53.
  • Li, J.; Miller, J. D. A review of gold leaching in acid thiourea solutions. Mineral Process. Extr. Metall. Rev. 2006, 27, 177–214.
  • Misra, G. S.; Bajpai, U. D. N.; Trekoval, J. Role of thiourea in redox polymerization. J.Macromol. Sci., C 1984, 24, 335–353.
  • Wang, J.; Li, H.; Yu, X.; Zu, L.; Wang, W. Chiral binaphthyl-derived amine-thiourea organocatalyst-promoted asymmetric Morita–Baylis–Hillman reaction. Org. Lett. 2005, 7, 4293–4296.
  • (a) Sharma, S. Thiophosgene in organic synthesis. Synthesis 1978, 11, 803–980; (b) Chaskar, A. C.; Yewale, S.; Bhagat, R.; Langi, B. P. Triphosgene: An efficient catalyst for synthesis of isothiocyanates. Synth. Commun. 2008, 38, 1972–1975.
  • (a) Blanco, J. L. J.; Barria, C. S.; Benito, J. M.; Mellet, C. O.; Fuentes, J.; Santoyo-Gonzalez, F.; Garcia Fernandez, J. M. A practical amine-free synthesis of symmetric ureas and thioureas by self-condensation of iso(thio)cyanates. Synthesis 1999, 11, 1907–1914; (b) Robbins, J. D.; Neal, J. R. A simple synthesis of certain unsymmetrically substituted N,N′-dialkylthioureas. Synth. Commun. 1986, 16, 891–897.
  • Wei, T.-B.; Zhang, Y.-M.; Gao, L.-M. An efficient synthesis of polymethylene-bis-aroyl thiourea derivatives under the condition of phase transfer catalysis. Synth. Commun. 2000, 30, 493–500.
  • Gan, S. F.; Wan, J. P.; Pan, Y. J.; Sun, C. R. Highly efficient and catalyst-free synthesis ofsubstituted thioureas in water. Mol. Divers. 2011, 15, 809–815.
  • Ballini, R.; Bosica, G.; Fiorini, D.; Maggi, R.; Righi, P.; Sartori, G.; Sartori, R. MCM-41-TBD as a new, efficient, supported heterogeneous catalyst for the synthesis of thioureas. Tetrahedron Lett. 2002, 43, 8445–8447.
  • Ranu, C.; Dey, S. S.; Bag, S. A simple and green procedure for the synthesis of symmetrical N,N′-disubstituted thioureas on the surface of alumina under microwave irradiation. Arkivoc 2003, 9, 14–20.
  • Mohanta, P. K.; Dhar, S.; Samal, S. K.; Ila, H.; Junjappa, H. 1-(Methyldithiocarbonyl) imidazole: A useful thiocarbonyl transfer reagent for synthesis of substituted thioureas. Tetrahedron 2000, 56, 629–637.
  • Ballabeni, M.; Ballini, R.; Bigi, F.; Maggi, R.; Parrini, M.; Predieri, G.; Sartori, G. Synthesis of symmetrical N,N′-disubstituted thioureas and heterocyclic thiones from amines and CS2 over a ZnO/Al2O3 composite as heterogeneous and reusable catalyst. J.Org. Chem. 1999, 64, 1029–1032.
  • Ramadas, K.; Janarthanan, N.; Velmathi, S. Lac sulfur assisted synthesis of symmetrical thioureas. Synth. Commun. 1997, 27, 2255–2260.
  • Li, Z.; Wang, Z. Y.; Zhao, Y. L.; Xing, Y. L.; Zhu, W. An environmentally benign method for the synthesis of symmetrical N, N′- disubstituted thiourea in a water medium. Phosphorus, Sulfur Silicon Relat. Elem. 2005, 180, 2745–2750.
  • Maddani, M. R.; Prabhu, K. R. A concise synthesis of substituted thiourea derivatives in aqueous medium. J. Org. Chem. 2010, 75, 2327–2332.
  • Azizi, N.; Amiri, A. K.; Ghafuri, H.; Bolourtchian, M. Towards a practical and waste-free synthesis of thioureas in water. Mol. Divers. 2011, 15, 157–161.
  • Halimehjani, A. Z.; Farahbakhsh, F. Solvent-free organic syntheses using supported reagents and microwave irradiation. J. Sulfur Chem. 2013, 34, 284–288.
  • (a) Wang, D.; Zhang, F.; Kuang, D.; Yu, J.; Li, J. A highly efficient Cu-catalyst system for N-arylation of azoles in water. Green Chem. 2012, 14, 1268–1271; (b) Halimehjani, A. Z.; Marjani, K.; Ashouri, A. Solvent-free organic syntheses using supported reagents and microwave irradiation. Green Chem. 2010, 12, 1306–1310.
  • Candeias, N. R.; Cal, P. M. S. D.; Andre, V.; Duarte, M. T.; Veiros, L. F.; Gois, P. M. P. Water as the reaction medium for multicomponent reactions based on boronic acids. Tetrahedron 2010, 66, 2736–2745.
  • (a) Kumavat, P. P.; Jangale, A. D.; Patil, D. R.; Dalal, K. S.; Meshram, J. S.; Dalal, D. S. Green synthesis of symmetrical N,N′-disubstituted thiourea derivatives in water using solar energy. Environ. Chem. Lett. 2013, 11, 177–182; (b) Patil, D.; Dalal, D. SOCl2/β-cyclodextrin: A new and efficient catalytic system for Beckmann rearrangement and dehydration of aldoximes under aqueous condition. Synth. Commun. 2013, 43, 118–128; (c) Patil, D. R.; Wagh, Y. B.; Ingole, P. G.; Singh, K.; Dalal, D. S. β-Cyclodextrin-mediated highly efficient [2 + 3] cycloaddition reaction for synthesis of 5-substituted 1H- tetrazoles. New J. Chem. 2013, 37, 3261–3266.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.