Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 45, 2015 - Issue 24
479
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

CU2O-Catalyzed C(SP3)-H/C(SP3)-H Cross-Coupling Using TEMPO: Synthesis of 3-(2-Oxoalkyl)-3-hydroxyoxindoles

, , , , &
Pages 2841-2848 | Received 26 Aug 2015, Published online: 14 Dec 2015

REFERENCES

  • For reviews, see (a) McGlacken, G. P.; Bateman, L. M. Recent advances in aryl-aryl bond formation by direct arylation. Chem. Soc. Rev. 2009, 38, 2447–2464; (b) Ashenhurst, J. A. Intermolecular oxidative cross-coupling of arenes. Chem. Soc. Rev. 2010, 39, 540–548; (c) Han, W.; Mayer, P.; Ofial, A. R. Palladium-catalyzed dehydrogenative cross couplings of benzazoles with azoles. Angew. Chem. Int. Ed. 2011, 50, 2178–2182; (d) Kuhl, N.; Hopkinson, M. N.; Wencel-Delord, J.; Glorious, F. Beyond directing groups: Transition metal-catalyzed C−H activation of simple arenes. Angew. Chem. Int. Ed. 2012, 51, 10236–10254.
  • For selected reviews, see (a) Yu, J.; Giri, R.; Chen, X. s-Chelation-directed C−H functionalizations using Pd(II) and Cu(II) catalysts: Regioselectivity, stereoselectivity, and catalytic turnover. Org. Biomol. Chem. 2006, 4, 4041–4047; (b) Giri, R.; Shi, B.; Engle, K.; Maugel, N.; Yu, J. Transition-metal-catalyzed C−H activation reactions: Diastereoselectivity and enantioselectivity. Chem. Soc. Rev. 2009, 38, 3242–3272; (c) Li, C. Cross-dehydrogenative coupling (CDC): Exploring C−C bond formations beyond functional group transformations. Acc. Chem. Res. 2009, 42, 335–344; (d) Chen, X.; Engle, K. M.; Wang, D.; Yu, J. Palladium(II)-catalyzed C–H activation/C–C cross-coupling reactions: Versatility and practicality. Angew. Chem. Int. Ed. 2009, 48, 5094–5115; (e) Ackermann, L.; Vicente, R.; Kapdi, A. R. Transition-metal-catalyzed direct arylation of (hetero)arenes by C−H bond cleavage. Angew. Chem. Int. Ed. 2009, 48, 9792–9826; (f) Yeun, C. S.; Dong, V. M. Catalytic dehydrogenative cross-coupling: Forming carbon−carbon bonds by oxidizing two carbon−hydrogen bonds. Chem. Rev. 2011, 111, 1215–1292; (g) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Bond formations between two nucleophiles: Transition-metal-catalyzed oxidative cross-coupling reactions. Chem. Rev. 2011, 111, 1780–1824; (h) Engle, K. M.; Mei, T.; Wasa, M.; Yu, J. Weak coordination as powerful means for developing broadly useful C-H functionalization reactions. Acc. Chem. Res. 2012, 45, 788–802.
  • (a) Trost, B. M. The chemistry reaction and atom economy. Science 1991, 254, 1471–1477; (b) Trost, B. M. On inventing reactions for atom economy. Acc. Chem. Res. 2002, 35, 695–705.
  • For reviews, see (a) Galliford, C. V.; Scheidt, K. A. Pyrrolidinyl-spirooxindole natural products as inspirations for the development of potential therapeutic agents. Angew. Chem. Int. Ed. 2007, 46, 8748–8758; (b) Marti, C.; M Carreira, E. Construction of spiro[pyrrolidine-3,3′-oxindoles]: Recent applications to the synthesis of oxindole alkaloids. Eur. J. Org. Chem. 2003, 2209–2219.
  • (a) Kagata, T.; Saito, S.; Shigemori, H.; Ohsaki, A.; Ishiyama, H.; Kubota, T.; Kobayashi, J. Paratunamides A−D, oxindole alkaloids from Cinnamodendron axillare. J. Nat. Prod. 2006, 69, 1517–1521; (b) Kohno, J.; Koguchi, Y.; Nishio, M.; Nakao, K.; Kuroda, M.; Shimizu, R.; Ohnuki, T.; Komatsubara, S. J. Org. Chem. 2000, 65, 990–995; (c) Kobayashi, J.; Suzuki, H.; Shimbo, K.; Takeya, K.; Morita, H. Celogentins A−C, new antimitotic bicyclic peptides from the seeds of Celosia argentea. J. Org. Chem. 2001, 66, 6626–6633.
  • Recent reviews, see (a) Shen, K.; Liu, X.; Lin, L.; Feng, X. Recent progress in enantioselective synthesis of C3-functionalized oxindoles: Rare earth metals take action. Chem. Sci. 2012, 3, 327–334; (b) Zhou, F.; Liu, Y.-L.; Zhou, J. Catalytic asymmetric synthesis of oxindoles bearing a tetrasubstituted stereocenter at the C-3 position. Adv. Synth. Catal. 2010, 352, 1381–1407.
  • (a) Ishimaru, T.; Shibata, N.; Nagai, J.; Nakamura, S.; Toru, T.; Kanemasa, S. Lewis acid–catalyzed enantioselective hydroxylation reactions of oxindoles and β-keto esters using DBFOX ligand. J. Am. Chem. Soc. 2006, 128, 16488–16489; (b) Sano, D.; Nagata, K.; Itoh, T. Catalytic asymmetric hydroxylation of oxindoles by molecular oxygen using a phase-transfer catalyst. Org. Lett. 2008, 10, 1593–4595; (c) Bui, T.; Candeias, N. R.; Barbas III, C. F. Dimeric quinidine-catalyzed enantioselective aminooxygenation of oxindoles: An organocatalytic approach to 3-hydroxyoxindole derivatives. J. Am. Chem. Soc. 2010, 132, 5574–5575; (d) Zhang, Z.; Zheng, W.; Antilla, J. C. Highly enantioselective catalytic benzoyloxylation of 3-aryloxindoles using chiral VAPOL calcium phosphate. Angew. Chem. Int. Ed. 2011, 50, 1135–1138.
  • For selected examples using metal catalysis, see (a) Shintani, R.; Inoue, M.; Hayashi, T. Angew. Chem. Int. Ed. 2006, 45, 3353–3356; (b) Hanhan, N. V.; Sahin, A. H.; Chang, T. W.; Fettinger, J. C.; Franz, A. K. Catalytic asymmetric synthesis of substituted 3-hydroxy-2-oxindoles. Angew. Chem. Int. Ed. 2010, 49, 744–747; (c) Tomita, D.; Yamatsugu, K.; Kanai, M.; Shibasaki, M. Enantioselective synthesis of SM-130686 based on the development of asymmetric Cu(I)F catalysis to access 2-oxindoles containing a tetrasubstituted carbon. J. Am. Chem. Soc. 2009, 131, 6946–6948.
  • For selected examples using organocatalysis, see (a) Nakamura, S.; Hara, N.; Nakashima, H.; Kubo, K.; Shibata, N.; Toru, T. Enantioselective synthesis of (R)-convolutamydine:A with new N-heteroarylsulfonylprolinamides. Chem. Eur. J. 2008, 14, 8079–8081; (b) Itoh, T.; Ishikawa, H.; Hayashi, Y. Asymmetric aldol reaction of acetaldehyde and isatin derivatives for the total syntheses of ent-convolutamydine E and CPC-1 and a half fragment of madindoline A and B. Org. Lett. 2009, 11, 3854–3857; (c) Liu, Y.-L.; Wang, B.-L.; Cao, J.-J.; Chen, L.; Zhang, Y.-X.; Wang, C.; Zhou, J. Organocatalytic asymmetric synthesis of substituted 3-hydroxy-2-oxindoles via Morita−Baylis−Hillman reaction. J. Am. Chem. Soc. 2010, 132, 15176–15178; (d) Zhang, K.; Yin, C.-K.; Liu, X.-H.; Lin, L.-L.; Feng, X.-M. Catalytic asymmetric addition of alkyl enol ethers to 1,2-dicarbonyl compounds: Highly enantioselective synthesis of substituted 3-alkyl-3-hydroxyoxindoles. Angew. Chem. Int. Ed. 2011, 50, 2573–2577; (e) Liu, Y.-L.; Zhou, J. Organocatalytic asymmetric synthesis of 3-difluoroalkyl 3-hydroxyoxindoles. Chem. Commun. 2012, 48, 1919–1921; (f) Hara, N.; Nakamura, S.; Funahashi, Y.; Shibata, N. Organocatalytic enantioselective decarboxylative addition of malonic acids half thioesters to isatins. Adv. Synth. Catal. 2011, 353, 2976–2980; (g) Zhong, F.-R.; Yao, W.-J.; Dou, X.-W.; Lu, Y.-X. Enantioselective construction of 3-hydroxy oxindoles via decarboxylative addition of β-ketoacids to isatins. Org. Lett. 2012, 14, 4018–4021.
  • (a) Jia, Y.-X.; Hillgren, J. M.; Watson, E. M.; Marsden, S. P.; Kündig, E. P. Chiral N-heterocyclic carbene ligands for asymmetric catalytic oxindole synthesis. Chem. Commun. 2008, 4040–4042; (b) Yin, L.; Kanai, M.; Shibasaki, M. A facile pathway to enantiomerically enriched 3-hydroxy-2-oxindoles: Asymmetric intramolecular arylation of α-keto amides catalyzed by a palladium–difluorPhos complex. Angew. Chem. Int. Ed. 2011, 50, 7620–7623; (c) Wei, W.-T.; Zhou, M.-B.; Fan, J.-H.; Liu, W.; Song, R.-J.; Liu, Y.; Hu, M.; Xie, P.; Li, J.-H. Synthesis of oxindoles by iron-catalyzed oxidative 1,2-alkylarylation of activated alkenes with an aryl C(sp2)-H bond and a C(sp3)-H bond adjacent to a heteroatom. Angew. Chem. Int. Ed. 2013, 52, 3638–3641; (d) Fan, J.-H.; Wei, W.-T.; Zhou, M.-B.; Song, R.-J.; Li, J.-H. Palladium-catalyzed oxidative difunctionalization of alkenes with α-carbonyl alkyl bromides initiated through a Heck-type insertion: A route to indolin-2-ones. Angew. Chem. Int. Ed. 2014, 53, 6650–6654; (c) Zhou, M.-B.; Wang, C.-Y.; Song, R.-J.; Liu, Y.; Wei, W.-T.; Li, J.-H. Chem. Commun. 2013, 49, 10817–10819.
  • For reviews on the application of TEMPO and its derivatives in organic synthesis, see (a) Sheldon, R. A.; Arends, I. W. C. E.; Brink, G. J. T.; Dijksman, A. Acc. Chem. Res. 2002, 35, 774–781 (b) Sheldon, R. A.; Arends, I. W. C. E. Organocatalytic oxidations mediated by nitroxyl radicals. Adv. Synth. Catal. 2004, 346, 1051–1071; (c) Tebben, L.; Studer, A. Nitroxides: Applications in synthesis and in polymer chemistry. Angew. Chem. Int. Ed. 2011, 50, 5034–5068; (d) Ciriminna, R.; Pagliaro, M. Industrial oxidations with organocatalyst TEMPO and its derivatives. Org. Process Res. Dev. 2010, 14, 245–251; (e) Piera, J.; Bäckvall, J.-E. Catalytic oxidation of organic substrates by molecular oxygen and hydrogen peroxide by multistep electron transfer—a biomimetic approach. Angew. Chem. Int. Ed. 2008, 47, 3506–3523; (f) Zhan, B.-Z.; Thompson, A. Recent developments in the aerobic oxidation of alcohols. Tetrahedron 2004, 60, 2917–2935; (e) Zhou, Z.-G.; Liu, L.-X. TEMPO and its derivatives: Synthesis and applications. Curr. Org. Chem. 2014, 18, 459–474.
  • (a) Ganachaud, C.; Garfagnoli, V.; Tron, T.; Iacazio, G. Trimerisation of indole through laccase catalysis. Tetrahedron Lett. 2008, 49, 2476–2478; (b) Bergman, J.; Bergman, S.; Lindström, J. O. Formation of 6,13-dimethyl-5,12-diazachrysene by oxidative coupling of 2-methylindole followed by base-induced ring-expansion. Tetrahedron Lett. 1998, 39, 4119–4122.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.