Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 47, 2017 - Issue 23
555
Views
17
CrossRef citations to date
0
Altmetric
Synthetic Communications Reviews

Green synthetic approaches for biologically relevant organic compounds

ORCID Icon & ORCID Icon
Pages 2139-2173 | Received 24 May 2017, Published online: 08 Nov 2017

References

  • (a) Muthusamy, K.; Sridharan, V.; Maheswaria, C. U.; Nagarajan, S. Lipase Catalyzed Synthesis of Fluorescent Glycolipids: Gelation Studies and Graphene Incorporated Self-Assembled Sheet Formation For Semiconductor Applications. Green Chem. 2016, 18, 3722–3731; (b) Pfaltzgraff, L. A.; Clark, J. H. Green Chemistry, Biorefineries and Second Generation Strategies for Re-use of Waster: An Overview, Advances in Biorefineries: Biomass and Waste Supply Chain Exploitation; Woodhead Publishing Limited 2014, 3–33; (c) El Kadib, A. Chitosan as a Sustainable Organocatalyst: A Concise Overview. ChemSusChem. 2015, 8, 217–244; (d) Titirici, M.-M.; White, R. J.; Brun, N.; Budarin, V. L.; Su, D. S.; Del Monte, F.; Clark, J. H.; MacLachlan, M. Review Article: Sustainable Carbon Materials. Chem. Soc. Rev. 2015, 44, 250–290.
  • (a) Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice; Oxford University Press: New York, 1998, 30; (b) Clark, J.; Macquarrie, D. M. A. Handbook of Green Chemistry and Technology. Oxford: Blackwell, 2002.
  • Cann, M. C.; Connelly, M. E. Real-World Cases in Green Chemistry; American Chemical Society: Washington, 2000.
  • (a) Heinhorst, S.; Cannon, G. Nature: “Green” Chemistry, Natural Antioxidants, and a DNA-Fueled Machine. J. Chem. Educ. 2001, 78, 150; (b) Kirchhoff, M. M. Topics in Green Chemistry. J. Chem. Educ. 2001, 78, 1577.
  • Hjeresen D. L.; Schutt, D. L.; Boese, J. M. Green Chemistry and Education. J. Chem. Educ. 2000, 77, 1543–1547.
  • Gilbertson, L. M.; Zimmerman, J. B.; Plata, D. L.; Hutchison, J. E.; Anastas, P. T. Designing Nanomaterials to Maximize Performance and Minimize Undesirable Implications Guided by the Principles of Green Chemistry. Chem. Soc. Rev. 2015, 44, 5758–5777.
  • Anastas, P. T.; Kirchhoff, M. M. Origins, Current Status, and Future Challenges of Green Chemistry. ‎Acc. Chem. Res. 2002, 35, 686–694.
  • Reed, S. M.; Hutchison, J. E. Green Chemistry in the Organic Teaching Laboratory: An Environmentally Benign Synthesis of Adipic Acid. J. Chem. Educ. 2000, 77, 1627.
  • Cann, M. C. Bringing State-of-the-art, Applied, Novel, Green Chemistry to the Classroom by Employing the Presidential Green Chemistry Challenge Awards. J. Chem. Educ. 1999, 76, 1639.
  • Collins, T. J. Introducing Green Chemistry in Teaching and Research. J. Chem. Educ. 1995, 72, 965.
  • Hofstetter, T. B.; Capello C.; Hungerbühler, K. Environmentally Preferable Treatment Options for Industrial Waste Solvent Management: A Case Study of a Toluene Containing Waste Solvent. Process Saf. Environ. Prot. 2003, 81, 189–202.
  • Amelio, A.; Genduso, G.; Vreysen, S.; Luis, P.; Bruggen, B. V. Guidelines Based on Life Cycle Assessment for Solvent Selection During the Process Design and Evaluation of Treatment Alternatives. Green Chem. 2014, 16, 3045–3063.
  • Figoli, A.; Marino, T.; Simone, S.; Nicolo, E. D.; Li, X. M.; He, T.; Tornaghi, S.; Drioli, E. Towards Non-Toxic Solvents for Membrane Preparation: A Review. Green Chem. 2014, 16, 4034–4059.
  • Drioli, E.; Brunetti, A.; Profio G. D.; Barbieri, G. Process Intensification Strategies and Membrane Engineering. Green Chem. 2012, 14, 1561–1572.
  • Szekely, G.; Jimenez-Solomon, M. F.; Marchetti, P.; Kim, J. F.; Livingston, A. G. Sustainability Assessment of Organic Solvent Nanofiltration: From Fabrication to Application. Green Chem. 2014, 16, 4440–4473.
  • Kim, J. F.; Szekely, G.; Valtcheva, I. B.; Livingston, A. G. Increasing the Sustainability of Membrane Processes Through Cascade Approach and Solvent Recovery Pharmaceutical Purification Case Study. Green Chem. 2014, 16, 133–145.
  • Burgal, J. D. S.; Peeva, L.; Livingston A. Towards Improved Membrane Production: Using Low-Toxicity Solvents for the Preparation of PEEK Nanofiltration Membranes. Green Chem. 2016, 18, 2374–2384.
  • (a) Gawande, M. B.; Bonifacio, V. D. B.; Luque, R.; Branco, P. S.; Varma, R. S. Benign by Design: Catalyst-Free in-Water, on-Water Green Chemical Methodologies in Organic Synthesis. Chem. Soc. Rev. 2013, 42, 5522–5551; (b) Ghashang, M.; Mansoor, S. S.; Mohammad, M. R. Green Chemistry Preparation of MgO Nanopowders: Efficient Catalyst for the Synthesis of Thiochromeno[4,3-b]pyran and Thiopyra-no[4,3-b]pyran Derivatives. J. Sulfur Chem. 2016, 37, 377–390; (c) Ghashang, M.; Mansoor, S. S.; Solaree, L. S.; Sharifian-esfahani, A. Multi-Component, One-Pot, Aqueous Media preparation of Dihydropyrano[3,2-c]chromene Derivatives Over MgO Nanoplates as an Efficient Catalyst. Iran. J. Catal. 2016, 6, 237–243.
  • (a) Gu, Y. Multicomponent Reactions in Unconventional Solvents: State of the Art. Green Chem. 2012, 14, 2091–2128; (b) Hadi T.; Ghashang, M.; Bireghan, M. N. Preparation of 1-amidoalkyl-2-Naphthol Derivatives Using Barium Phosphate Nano-Powders. Chin. Chem. Lett. 2015, 27, 119–126; (c) Mansoor, S. S.; Majid, G. Synthesis of a Novel Series of 7-hydroxy-10-aryl-10hindeno[1,2-b]chromen-11-ones, Indeno[1,2-b]naphtho[1,2-e]pyran-12 (13H)-one, and Indeno[1,2-b]naphtho[3,2-e]pyran-5,11,13-trione Catalyzed by Reusable Polyvinylpolypyrrolidone-Supported Triflic Acid. Res. Chem. Intermed. 2015, 41, 9085–9100.
  • Butler, R. N.; Coyne, A. G. Water: Nature’s Reaction Enforcers-Comparative Effects for Organic Synthesis “In-Water” and “On-Water”. Chem. Rev. 2010, 110, 6302–6337.
  • Grieco, P. A. Organic Synthesis in Water; Blackie Academic and Professional: London, 1998.
  • Hirai, Y.; Uozumi, Y. Clean Synthesis of Triarylamines: Buchwald–Hartwig Reaction in Water With Amphiphilic Resin-Supported Palladium Complexes. Chem. Commun. 2010, 46, 1103–1105.
  • Savant, M. M.; Pansuriya, A. M.; Bhuva, C. V.; Kapuriya, N.; Patel, A. S.; Audichya, V. B.; Pipaliya, P. V.; Naliapara, Y. T. Water Mediated Construction of Trisubstituted Pyrazoles/Isoxazoles Library Using Ketene Dithioacetals. J. Comb. Chem. 2010, 12, 176–180.
  • Carril, M.; SanMartin, R.; Tellitu, I.; Dominguez, E. On-Water Chemistry: Copper-Catalyzed Straightforward Synthesis of Benzo[b]Furan Derivatives in Neat Water. Org. Lett. 2006, 8, 1467–1470.
  • Li, C. J.; Chen, L. Organic Chemistry in Water. Chem. Soc. Rev. 2006, 35, 68–82.
  • Tsukinoki, T.; Nagashima, S.; Mitoma, Y.; Tashiro, M. Organic Reaction in Water. Part 4. New Synthesis of Vicinal Diamines Using Zinc Powder-Promoted Carbon–Carbon Bond Formation. Green Chem. 2000, 2, 117–119.
  • Bigi, F.; Conforti, M. L.; Maggi, R.; Piccinno, A.; Sartori, G. Clean Synthesis in Water: Uncatalysed Preparation of Ylidenemalononitriles. Green Chem. 2000, 2, 101–103.
  • Head-Gordon, T.; Hura, G. Water Structure From Scattering Experiments and Simulation. Chem. Rev. 2002, 102, 2651–2669.
  • Lindstrom, U. M. Stereoselective Organic Reactions in Water. Chem. Rev. 2002, 102, 2751–2771.
  • (a) Hayashi, Y. In Water or in the Presence of Water? Angew. Chem. Int. Ed. 2006, 45, 8103–8104.
  • Saveant, J. M. Electrochemical Approach to Proton-Coupled Electron Transfers: Recent Advances. Energy Environ. Sci. 2012, 5, 7718–7731.
  • Shi F.; Ma, N.; Zhou, D.; Zhang, G.; Chen, R.; Zhang, Y.; Tu, S. Green Approach to the Synthesis of Polyfunctionalized Pyrazolo[4′,3′:5,6]Pyrido[2,3-d]Pyrimidines Via Microwave-Assisted Multicomponent Reactions in Water Without Catalyst. Syn. Commun. 2010, 40, 135–143.
  • Azizi, N.; Aryanasab, F.; Tourkian, L.; Saidi, M. R. Versatile and Large-Scale Synthesis of Functional Dithiocarbamates in Water. Syn. Commun. 2011, 41, 94–99.
  • Tang, L.; Yang, Y.; Wen, Y.; Yanga, X.; Wang, Z. Catalyst-Free Radical Fluorination of Sulfonyl Hydrazides in Water. Green Chem. 2016, 18, 1224–1228.
  • Tisseh, Z. N.; Dabiri, M.; Nobahar, M.; Khavasi, H. Z.; Bazgir, A. Catalyst-Free, Aqueous and Highly Diastereoselective Synthesis of New 5-Substituted 1h-Tetrazoles Via A Multi-Component Domino Knoevenagel Condensation/1,3 Dipolar Cycloaddition Reaction. Tetrahedron 2012, 68, 1769–1773.
  • Eftekhari-Sis, B.; Vahdati-Khajeh, S.; Amini, S. M.; Zirak, M.; Saraei, M. J. Willgerodt–Kindler Reaction of Arylglyoxals With Amines and Sulfur in Aqueous Media: A Simple and Efficient Synthesis of α-Ketothioamides. J. Sulfur Chem. 2013, 34, 464–473.
  • Akbaslar, D.; Demirkol, O.; Giray, S. Paal–Knorr Pyrrole Synthesis in Water. Syn. Commun. 2014, 44, 1323–1332.
  • Yang, Y.; Zhang, S.; Tang, L.; Hu, Y.; Zha, Z.; Wang, Z. Catalyst-Free Thiolation of Indoles With Sulfonyl Hydrazides for the Synthesis of 3-Sulfenylindoles in Water. Green Chem. 2016, 18, 2609–2613.
  • Jangale, A. D.; Kumavat, P. P.; Wagh, Y. B.; Tayade, Y. A.; Dalal, D. S. Green Process Development for the Synthesis of Aliphatic Symmetrical N,N′-Disubstituted Thiourea Derivatives in Aqueous Medium. Syn. Commun. 2015, 45, 236–244.
  • Sangshetti, J. N.; Dharmadhikari, P. P.; Chouthe, R. S.; Fatema, B. Water Mediated Oxalic Acid Catalyzed One Pot Synthesis of 1,8-Dioxode Cahydroacridines. Arabian J. Chem. 2012. DOI:10.1016/j.arabjc.2012.06.005
  • Ghafuri, H.; Hashemi, M. M. One-Pot Reductive Amination of Aldehydes by the Dihydropyridine in Water. Sci. Iran. C, 2012, 19, 1591–1593; (b) Ghashang, M.; Sheik, S.; Aswin, K. Thiourea Dioxide: An Efficient and Reusable Organocatalyst for the Rapid One-Pot Synthesis of Pyrano[4,3-b] Pyran Derivatives in Water. Chinese J. Catal. 2014, 35, 127–133; (c) Ghashang, M.; Mansoor, S. S.; Logaiya, K.; Aswin, K. An Appropriate One-Pot Synthesis of 4-Aryl-2-Naphthalen-2-yl-5H-Indeno[1,2-b]pyridin-5-ones Using Thiourea Dioxide as an Efficient and Reusable Organocatalyst. Res. Chem. Intermediates 2015, 41, 6325–6338.
  • Sangshetti, J. N.; Kalam Khan, F. A.; Chouthe, R. S.; Zaheer, Z.; Ahmed, R. Z. Water-Mediated Oxalic Acid Catalysed One-Pot Synthesis of 2-(Substituted Phenyl) Phthalazin-1(2H)-Ones. J. Taibah Univ. Sci. 2015, 9, 548–554.
  • Poomathi, N.; Mayakrishnan, S.; Muralidharan, D.; Srinivasan R.; Perumal, P. T. Reaction of Isatins With 6-Amino Uracils and Isoxazoles: Isatin Ring-Opening vs. Annulations and Regioselective Synthesis of Isoxazole Fused Quinoline Scaffolds in Water. Green Chem. 2015, 17, 3362–3372.
  • Chate, A. V.; Rathod, U. B.; Kshirsagar, J. S.; Gaikwad, P. A.; Mane, K. D.; Mahajan, P. S.; Nikam, M. D.; Gill, C. H. Ultrasound Assisted Multicomponent Reactions: A Green Method for the Synthesis of N‐Substituted 1,8‐Dioxo‐Decahydroacridines Using β‐Cyclodextrin as a Supramolecular Reusable Catalyst in Water. Chinese J. Catal. 2016, 37, 146–152.
  • Tayade, Y. A.; Patil, D. R.; Wagh, Y. B.; Jangale, A. D.; Dalal, D. S. An Efficient Synthesis of 3-Indolyl-3-Hydroxy Oxindoles and 3,3-Di(Indolyl)Indolin-2-Ones Catalyzed by Sulfonated β-CD as a Supramolecular Catalyst in Water. Tetrahedron Lett. 2015, 56, 666–673.
  • (a) Multicomponent Reactions, Zhu, J. and Bienaym, H., (Eds.); Wiley-VCH: Weinheim, ISBN: 978-3-527-30806-4, 2005, p. 484; (b) Kappe, C. O. The Biginelli Reaction, in Multicomponent Reactions Zhu, J., Bienaymé, H., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG. doi: 10.1002/3527605118.ch4; (c) Arjun, M.; Sridhar, D.; Chari, M. A., Sarangapani, M. An Efficient Biginelli One-Pot Synthesis of New Benzoxazole-Substituted Dihydropyrimidinones and Thiones Catalysed by Alumina-Supported Trifluoromethane Sulfonic Acid Under Solvent Free Conditions. J. Heterocycl. Chem. 2009, 46, 119–123; (d) Chandak, H. S.; Lad, N. P.; Upare, P. P. Recyclable Amberlyst-70 as a Catalyst for Biginelli Reaction: An Efficient One-Pot Green Protocol for the Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones. Catal. Lett. 2009, 131, 469–473; (e) An, J. Y.; Bagnell, L.; Cablewski, T.; Strauss, C. R.; Trainor, R. W. Applications of High-Temperature Aqueous Media for Synthetic Organic Reactions. J. Org. Chem. 1997, 62, 2505–2511; (f) Strauss, R.; Trainor, R. W. Reactions of Ethyl Indole-2-Carboxylate in Aqueous-Media at High-Temperature. Aust. J. Chem. 1998, 51, 703–705.
  • (a) Kumavat, P. P.; Jangale, A. D.; Patil, D. R.; Dalal, K. S.; Meshram, J. S.; Dalal, D. S. Green Synthesis of Symmetrical N,N′-Disubstituted Thiourea Derivatives in Water Using Solar Energy. Environ. Chem. Lett. 2013, 11, 177–182; (b) Jangale, A. D.; Wagh, Y. B.; Tayade, Y. A.; Dalal, D. S. A Simple and Efficient Synthesis of 5-Substituted-3-Phenyl-2-Thioxoimidazolidin-4-One Derivatives from S-Amino Acids and Phenylisothiocyanate in ET3N/DMF-H2O. Synth. Commun. 2015, 45, 1876–1886.
  • Protti, S.; Fagnoni, M. The Sunny Side of Chemistry: Green Synthesis by Solar Light. Photochem. Photobiol. Sci. 2009, 8, 1499–1516.
  • Funken, K. H. Solar Chemistry: Classification, Criteria, and Identification of R and D Deficits. Sol. Energ. Mat. Sol. Cells. 1991, 24, 370–385.
  • Protti, S.; Manzini, S.; Fagnoni, M.; Albini, A. The Contribution of Photochemistry to Green Chemistry. Eco-Friendly Synthesis of Fine Chemicals 2009, 80–111.
  • Varma, R. S. Solvent-Free Organic Syntheses Using Supported Reagents and Microwave Irradiation. Green Chem. 1999, 1, 43–55; (b) Wagh, Y. B.; Kuwar, A. S.; Patil, R. A.; Tayade, Y. A.; Jangale, A. D.; Terdale, S. S.; Trivedi, D. R.; Gallucci, J.; Dalal, D. S. Highly Efficient Regioselective Synthesis of 2-Imino-4-Oxothiazolidin-5-Ylidene Acetates Via A Substitution Dependent Cyclization Sequence Under Catalyst-Free Conditions at Ambient Temperature. Ind. Eng. Chem. Res. 2015, 54, 9675–9782.
  • Barsy, M. A.; Abdel Latif, F. M.; Aref, A. A.; Sadek, K. U. Microwave-Assisted Reactions: Part 2. One-Pot Synthesis Of Pyrimido[1,2-a] Pyrimidines. Green Chem. 2002, 4, 196–198.
  • Scholes, G. D.; Fleming, G. R.; Olaya-Castro, A.; Grondelle, R. V. Lessons from Nature About Solar Light Harvesting. Nat. Chem. 2011, 3, 763–774.
  • Timilsina, G. R.; Kurdgelashvili, L.; Narbel, P. A. A Review of Solar Energy: Markets, Economics and Policies; World Bank Policy Research Working Paper No. WPS, 2011, 5845.
  • Ravelli, D.; Dondi, D.; Fagnonia, M.; Albini, A. Photocatalysis. A Multi-Faceted Concept for Green Chemistry. Chem. Soc. Rev. 2009, 38, 1999–2011.
  • (a) Steinfeld, A. Solar Thermochemical Production of Hydrogen-A Review. Sol. Energ., 2005, 78, 603–615; (b) Yadav, D.; Banerjee, R. A Review of Solar Thermochemical Processes. Renew. Sustain. Energ. Rev. 2016, 54, 497–532.
  • Galvez, J. B.; Rodriguez, S. M. Solar energy conversion and photoenergy systems-vol. II- Solar photochemistry Enclopedia of Life Support Systems (EOLSS).
  • (a) Mekheimer, R. A.; Hameed, A. A.; Sadek, K. U. Solar Thermochemical Reactions: Four-Component Synthesis of Polyhydroquinoline Derivatives Induced by Solar Thermal Energy. Green Chem. 2008, 10, 592–593; (b) Sharma, G. V. M.; Reddy, K. L.; Lakshmi, P. S.; Krishna, P. R. ‘In situ’; Generated ‘HCl’—An Efficient Catalyst for Solvent-Free Hantzsch Reaction at Room Temperature: Synthesis of New Dihydropyridine Glycoconjugates. Synthesis 2006, 55–58; (c) Wang, L. M.; Sheng, J.; Zhang, L.; Han, J.-W.; Fan, Z.-Y.; Tian, H.; Qian, C.-T. Facile Yb(OTf)3 Promoted One-Pot Synthesis of Polyhydroquinoline Derivatives Through Hantzsch Reaction. Tetrahedron 2005, 61, 1539–1543.
  • Mekheimer, R. A.; Ameen, M. A.; Sadek, K. U. Solar Thermochemical Reactions II: Synthesis of 2-Aminothiophenes Via Gewald Reaction Induced by Solar Thermal Energy. Chin. Chem. Lett. 2008, 19, 788–790.
  • Mekheimer, R. A.; Hameed, A. M. A.; Mansour, S. A. A.; Sadek, K. U. Solar Thermochemical Reactions III: A Convenient One-Pot Synthesis of 1,2,4,5-Tetrasubstituted Imidazoles Catalyzed by High Surface Area SiO2 and Induced by Solar Thermal Energy. Chin. Chem. Lett. 2009, 20, 812–814.
  • (a) Merino, P. Nitrones and its Cyclic Analogues. In Science of Synthesis, Bellus, D.; Padwa, A., (Eds.); George Thieme: Stuttgart, Germany, 2004, 27, 511–580; (b) Tufariello, J. J. In 1,3-Dipolar Cycloaddition Chemistry, Padwa, A., (Ed.); Wiley and Sons: New York, 1984, 2, 83–168; (c) Padwa, A.; Schoffstall, A. M. Intramolecular 1,3-Dipolar Cycloaddition Chemistry in Advances in Cycloaddition. Curran, D. P., (Ed.), 1990, 2; (d) Mekheimer, R. A.; Al-Zaydi, K. M.; Al-Shamary, A.; Sadek, K. U. Solar Thermochemical Reactions IV: Unusual Reaction of Nitrones With Acetonitrile Derivatives Induced by Solar Thermal Energy. Green Sustain. Chem. 2011, 1, 176–181.
  • (a) Maddani, M. R.; Prabhu, K. R. A Concise Synthesis of Substituted Thiourea Derivatives in Aqueous Medium. J. Org. Chem., 2010, 75, 2327–233; (b) Ballini, R.; Bosica, G.; Fiorini, D.; Maggi, R.; Righi, P.; Sartori, G.; Sartori, R. MCM-41-TBD as a New, Efficient, Supported Heterogeneous Catalyst for the Synthesis of Thioureas, Tetrahedron Lett. 2002, 43, 8445–8447.
  • Zayas, M. S.; Gaitor, J. C.; Nestor, S. T.; Minkowicz, S.; Sheng, Y.; Mirjafari, A. Bifunctional Hydrophobic Ionic Liquids: Facile Synthesis by Thiol-Ene “Click” Chemistry. Green Chem. 2016, 18, 2443–2452.
  • Niedermeyer, H.; Hallett, J. P.; Villar-Garcia, I. J.; Hunt, P. A.; Welton, T. Mixtures of Ionic Liquids. Chem. Soc. Rev. 2012, 41, 7780–7802.
  • Freemantle, M. Designer Solvents, Ionic Liquids May Boost Clean Technology Development. Chem. Eng. News Arch. 1998, 76, 32–37.
  • Petkovic, M.; Seddon, K. R.; Rebeloa, L. P. N.; Pereira, C. S. Ionic Liquids: A Pathway to Environmental Acceptability. Chem. Soc. Rev. 2011, 40, 1383–1403.
  • (a) Wasserschied, P.; Keim, W. Ionic Liquids-New “Solutions” for Transition Metal Catalysis. Angew. Chem. Int. Ed. 2000, 39, 3772–3789; (b) Ionic Liquids in Synthesis, Welton, T.; Wasserschied, P., (Eds.); VCH-Wiley, Weinheim, 2002.
  • Plechkova, N. V.; Seddon, K. R. Ionic Liquids:“Designer” Solvents for Green Chemistry. In Methods and Reagents for Green Chemistry: An Introduction, Tundo, P., Perosa, A., and Zecchini, F., (Eds.); Wiley: New York, 2007, 105–130.
  • Stark, A.; Seddon, K. R. Ionic Liquids, in Kirk-Othmer Encyclopaedia of Chemical Technology 5th ed.; Seidel, A., Ed.; John Wiley & Sons, Inc.: Hoboken, New Jersey, 2007, 26, 836–920.
  • (a) Rebelo, L. P. N.; Lopes, J. N. C.; Esperanc¸, J. M. S. S.; Guedes, H. J. R.; Łachwa, J.; Najdanovic-Visak, V.; Visak, Z. P. Accounting for the Unique, Doubly Dual Nature of Ionic Liquids From a Molecular Thermodynamic and Modeling Standpoint. Acc. Chem. Res. 2007, 40, 1114–1121; (b) Ratti, R. Ionic Liquids: Synthesis and Applications in Catalysis. Adv. Chem. 2014, 1–16.
  • (a) Harris, G. D.; Nguyen, A.; App, H.; Hirth, P.; McMahon, G.; Tang, C. A One-Pot, Two-Step Synthesis of Tetrahydro Asterriquinone E. Org. Lett. 1999, 1, 431–433.; (b) Pirrung, M. C.; Park, K.; Li, Z. T. Synthesis of 3-Indolyl-2,5-Dihydroxybenzoquinones. Org. Lett. 2001, 3, 365–367; (c) Yadav, J. S.; Reddy, B. V. S.; Swamy, T. InBr3-Catalyzed Conjugate Addition of Indoles to p-Quinones: An Efficient Synthesis of 3-Indolylquinones. Synthesis 2004, 1, 106–110.
  • Handy, S. T.; Zhang, X. Organic Synthesis in Ionic Liquids: The Stille Coupling. Org. Lett. 2001, 3, 233–236.
  • Hierso, J.-C.; Boudon, J.; Picket, M.; Meunier, P. The First Catalytic Method for Heck Alkynylation of Unactivated Aryl Bromides (Copper-Free Sonogashira) in an Ionic Liquid: 1 mol% Palladium/Triphenylphosphane/Pyrrolidine in [BMIM][BF4] as a Simple, Inexpensive and Recyclable System. Eur. J. Org. Chem. 2007, 583–587.
  • Guan, J.; Yu, G.-A.; Hou, J.-G.; Yu, N.; Ren, Y.; Liu, S. H. Dppc +PF6− – PdCl2 – [BMIM][PF6]– A Copper-Free Recyclable Catalytic System for Sonogashira Coupling Reaction. Appl. Organomet. Chem. 2007, 21, 355–359.
  • (a) Chakraborti, A. K.; Roy, S. R.; Kumar, D.; Chopra, P. Catalytic Application of Room Temperature Ionic Liquids: [BMIM][MeSO4] as a Recyclable Catalyst for Synthesis of bis(indolyl)methanes. Ion-Fishing by MALDI–TOF–TOF MS and MS/MS Studies to Probe the Proposed Mechanistic Model of Catalysis. Green Chem. 2008, 10, 1111–1118; (b) Bloxham, J.; Moody, C. J.; Slawin, A. M. Z. Synthesis and Solid State Structures of N,N′-Linked Carbazoles and Indoles. Tetrahedron 2002, 58, 3709–3720.
  • (a) Saleh, S.; Fayad, E.; Azouri, M.; Hierso, J.-C.; Andrieu, J.; Picquet, M. Donor-Stabilized Phosphenium Adducts as New Efficient and Immobilizing Ligands in Palladium-Catalyzed Alkynylation and Platinum-Catalyzed Hydrogenation in Ionic Liquids. Adv. Synth. Catal. 2009, 351, 1621–1628; (b) Beccalli, E. M.; Broggini, G.; Martinelli, M.; Sottocornola, S. C-C, C-O, C-N Bond Formation on sp2 Carbon by Pd(II)-Catalyzed Reactions Involving Oxidant Agents. Chem. Rev. 2007, 107, 5318–5365; (c) Carril, M.; SanMartin, R.; Dominguez, E. Palladium and Copper-Catalysed Arylation Reactions in the Presence of Water, With a Focus on Carbon–Heteroatom Bond Formation. Chem. Soc. Rev. 2008, 37, 639–647.
  • (a) Liu, Y.; Xu, Y.; Jung, S. H.; Chae, J. A Facile and Green Protocol for Nucleophilic Substitution Reactions of Sulfonate Esters by Recyclable Ionic Liquids [BMIM][X]. Synlett 2012, 2692–2698; (b) Chaskar, A. C.; Yewale, S.; Bhagat, R.; Langi, B. P. Triphosgene: An Efficient Catalyst for Synthesis of Isothiocyanates. Synth. Commun. 2008, 38, 1972-1975.
  • (a) Kanakaraju, S.; Prasanna, B.; Chandramouli, G. V. P. Ionic Liquid Mediated a Facile and Convenient Synthesis of New Selanyl Tetrazoles Via One-Pot Three-Component Reaction. J. Chem. Pharm. Res. 2012, 4, 2994–2998; (b) Kadaba, P. K. Role of Protic and Dipolar Aprotic Solvents in Heterocyclic Syntheses Via 1,3-Dipolar Cycloaddition Reactions. Synthesis 1973, 2, 71–84; (c) Wittenberger, S. J. Recent Developments in Tetrazole Chemistry. A Review. Org. Prep. Proc. Int. 1994, 26, 499–531; (c) Sureshbabu V. V.; Naik, S. A.; Nagendra Nagendra Synthesis of Boc-Amino Tetrazoles Derived From α-Amino Acids. Synth. Commun. 2009, 39, 395–406.
  • Safaei-Ghomi, J.; Ghasemzadeh, M. A. Synthesis of Some 3, 5-Diaryl-2-Isoxazoline Derivatives in Ionic Liquids Media. J. Serb. Chem. Soc. 77, 733–739; Chem. Abstr., 2012, 157, 410156.
  • Niknam, K.; Piran, A. Silica-Grafted Ionic Liquids as Recyclable Catalysts for the Synthesis of 3,4-Dihydropyrano[c]Chromenes and Pyrano[2,3-c]Pyrazoles. Green Sustain. Chem. 2013, 3, 1–8.
  • Wagh, K. V.; Bhanage B. M. Synthesis of 2-Phenylnaphthalenes From Styrene Oxides Using a Recyclable Brønsted Acidic [HNMP]+HSO4− Ionic Liquid. Green Chem. 2015, 17, 4446–4451.
  • Tharun, J.; Bhin, K.-M.; Roshan, R.; Kim, D. W.; Kathalikkattil, A. C.; Babu, R.; Ahn, H. Y.; Won, Y. S.; Park, D.-W. Ionic Liquid Tethered Post Functionalized ZIF-90 Framework for the Cycloaddition of Propylene Oxide and CO2. Green Chem. 2016, 18, 2479–2487.
  • Gu, L.; Wang, W.; Liu, J.; Lia, G.; Yuan, M. [BMIM]OH-Catalyzed Amidation of Azides and Aldehydes: An Efficient Route to Amides. Green Chem. 2016, 18, 2604–2608.
  • Padvi, S. A.; Tayade, Y. A.; Wagh, Y. B.; Dalal, D. S. [BMIM]OH: An Efficient Catalyst for the Synthesis of Mono and Bis Spirooxindole Derivatives in Ethanol at Room Temperature. Chinese Chem. Lett. 2016, 27, 714–720.
  • Chatel, G.; MacFarlane, D. R. Ionic Liquids and Ultrasound in Combination: Synergies and Challenges. Chem. Soc. Rev. 2014, 43, 8132–8149.
  • Harjani, J. R.; Abraham, T. J.; Gomez, A. T.; Garcia, M. T.; Singer, R. D.; Scammells, P. J. Sonogashira Coupling Reactions in Biodegradable Ionic Liquids Derived From Nicotinic Acid. Green Chem. 2010, 12, 650–655.
  • (a) Deshmukh, R. R.; Rajagopal, R.; Srinivasan, K. V. Ultrasound Promoted C-C Bond Formation: Heck Reaction at Ambient Conditions in Room Temperature Ionic Liquids. Chem. Commun. 2001, 1544–1545; (b) Ambulgekar, V. G.; Bhanage, M. B.; Samant, D. S. Low Temperature Recyclable Catalyst for Heck Reactions Using Ultrasound. Tetrahedron Lett. 2005, 46, 2483–2485.
  • Bonrath, W.; Letinois, U.; Netscher, T.; Schutz, J. Mizoroki-Heck Reactions: Modern Solvent Systems and Reaction Techniques. In The Mizoroki-Heck Reaction, Oestreich, M., (Eds.); John Wiley & Sons, Ltd.: Chichester, UK, 2009.
  • (a) Zhao, S.; Zhao, E.; Shen, P.; Zhao, M.; Sun, J. An Atom-Efficient and Practical Synthesis of New Pyridinium Ionic Liquids and Application in Morita–Baylis–Hillman Reaction. Ultrason. Sonochem. 2008, 15, 955–959; (b) Porto, R. S.; Amarante, G. W.; Cavallaro, M.; Poppi, R. J.; Coelho, F. Improved Catalysis of Morita–Baylis–Hillman Reaction. The Strong Synergic Effect Using Both an Imidazolic Ionic Liquid and a Temperature. Tetrahedron Lett. 2009, 50, 1184–1187.
  • (a) Bai, L.; Wang, J.-X. Environmentally Friendly Suzuki Aryl–Aryl Cross-Coupling Reaction. Curr. Org. Chem. 2005, 9, 535–553.
  • Narayanaperumal, S.; Silva, R. C. D.; Feu, K. S.; Torre, A. F. D. L.; Correa A. G.; Paixao, M. W. Basic-Functionalized Recyclable Ionic Liquid Catalyst: A Solvent-Free Approach for Michael Addition of 1,3-Dicarbonyl Compounds to Nitroalkenes Under Ultrasound Irradiation. Ultrason. Sonochem. 2013, 20, 793–798.
  • Zhao, S.; Wang, X.; Zhang, L. Rapid and Efficient Knoevenagel Condensation Catalyzed by a Novel Protic Ionic Liquid Under Ultrasonic Irradiation. RSC Adv. 2013, 3, 11691–11696.
  • Yadav, N.; Hussain, M. K.; Ansari, M. I.; Gupta, P. K.; Hajela, K. A. Highly Efficient Ultrasound-Promoted Synthesis of 2,3-Disubstituted Benzo[b]furans Via Intramolecular C‒C Bond Formation in [BMIM]BF4 at Room Temperature. RSC Adv. 2013, 3, 540–544.
  • Rostamnia, S.; Amini, M. Ultrasonic and Lewis Acid Ionic Liquid Catalytic System for Kabachnik-Fields Reaction. Chem. Pap. 2014, 68, 834–837.
  • (a) Anna, F. D.; Marullo, S.; Vitale, P.; Noto, R. Synthesis of Aryl Azides: A Probe Reaction to Study the synergetic Action of Ultrasounds and Ionic Liquids. Ultrason. Sonochem. 2012, 19, 136–142; (b) Docampo, L. M.; Pellon, R. F. Synthesis of 11H-Pyrido[2,1-b]Quinazolin-11-One and Derivatives Using Ultrasound Irradiation. Syn. Commun. 2003, 33, 1777–1781; (c) Pellon, F. R.; Docampo, L. M.; Kunakbaeva, Z.; Gomez, V.; Castro-Velez, H. Synthesis of 9‐Methyl‐11H‐Pyrido[2,1‐b]Quinazolin‐11‐One Using The Ullmann Condensation. Syn. Commun. 2006, 36, 481–485.
  • Lühken, A.; Bader, H. J. Energy Input from Microwaves and Ultra Sound—Examples of New Approaches to Green Chemistry, In Royal Society of Chemistry (ed.), Green Chemistry. Cambridge: Royal Chemical Society, 2003.
  • Rajagopal, R.; Jarikote, V. D.; Srinivasan, K. V. Ultrasound Promoted Suzuki Cross-Coupling Reactions in Ionic Liquid at Ambient Conditions. Chem. Commun. 2002, 616–617.
  • Luche, J. L. Developments of the New ‘Experimental Theory’ of Sonochemistry Initiated in Grenoble. Ultrasonics 1992, 30, 156–162.
  • Henglein, A. Advances in Sonochemistry, Mason, T. J., (Ed.); JAI Press: London and Greenwich, 1993, 3, 17–83.
  • (a) Leite, A. C. L.; Moreira, D. R. M.; Coelho, L. C. D.; Menezes, F. D.; Brondani, D. J. Synthesis of Aryl-Hydrazones Via Ultrasound Irradiation in Aqueous Medium. Tetrahedron Lett. 2008, 49, 1538–1541; (b) Benmohammed, A.; Khoumeri, O.; Djafri, A.; Terme, T.; Vanelle, P. Synthesis of Novel Highly Functionalized 4-Thiazolidinone Derivatives from 4-Phenyl-3-Thiosemicarbazone. Molecules 2014, 19, 3068–3083.
  • Mojtahedi, M. M.; Alishiri, T.; Abaee, M. S. Ultrasound-Mediated Willgerodt–Kindler Reactions: non-Thermal Synthesis of Thioacetamides. Phosphorus, Sulfur Silicon Relat. Elem. 2011, 186, 1910–1915.
  • Zou, Y.; Hu, Y.; Liu, H.; Shi, D. Rapid and Efficient Ultrasound-Assisted Method for the Combinatorial Synthesis of spiro[indoline-3,4′-pyrano[2,3-c]pyrazole] Derivatives. ACS Comb. Sci. 2012, 14, 38–43.
  • Wangngae, S.; Janprasit, J.; Phakhodee, W.; Pattarawarapan, M. Ultrasound-Assisted Solvent-Free Synthesis Of Benzyl Nitriles Using Amberlite IRA 900 Supported Cyanide Ion. Monatsh. Chem. 2014, 145, 1845–1849.
  • Kanchithalaivan, S.; Sumesh, R. V.; Kumar, R. R. Ultrasound-Assisted Sequential Multicomponent Strategy for the Combinatorial Synthesis of Novel Coumarin Hybrids. ACS Comb. Sci. 2013, 16, 566–572.
  • Azizi, N.; Rahimzadeh-Oskooee, A.; Yadollahy, Z.; Ourimi, A. G. Ultrasound-Assisted Rapid Sustainable Synthesis of Substituted Thiourea. Monatsh. Chem. 2014, 145, 1675–1680.
  • Belhani, B.; Berredjem, M.; Le Borgne, M.; Bouaziz, Z.; Lebretonc, J.; Aoufa, N. -E. A One-Pot Three-Component Synthesis of Novel α-Sulfamidophosphonates Under Ultrasound Irradiation and Catalyst-Free Conditions. RSC Adv. 2015, 5, 39324–39329.
  • Rocha, M. P. D.; Oliveira, A. R.; Albuquerque, T. B.; Da Silva, C. D. G.; Katla, R.; Domingues, N. L. C. A Novel and Efficient Methodology for Thio-Michael Addition in the Synthesis of cis-β-thio-α-Aminoacid Derivatives Using Zn[(L)-Pro]2 as Heterogeneous Catalyst. RSC Adv. 2016, 6, 4979–4982.
  • Fersht, A. Enzyme Structure and Mechanism, W. H. Freeman & Co (Sd) ISBN 10: 0716716143/ISBN 13: 9780716716143.
  • Khazir, J.; Ali, I.; Khan, I. A.; Kumar, H. M. S. Enzyme Mediated-Transesterification of Verbascoside and Evaluation of Antifungal Activity of Synthesised Compounds. Nat. Prod. Res. 2015, 29, 727–734.
  • Payen, A.; Persoz, J.-F. Mémoire sur la diastase, les principaux produits de ses réactions et leurs applications aux arts industriels. Ann. Chim. Phys. 1833, 53, 73–92.
  • International Union of Biochemistry and Molecular Biology. Webb, E. C. Enzyme Nomenclature 1992: Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the Nomenclature and Classification of Enzymes; International Union of Biochemistry and Molecular Biology by Academic Press: San Diego, 1992.
  • Shoda, S. -I.; Uyama, H.; Kadokawa, J.-I.; Kimura, S.; Kobayashi, S. Enzymes as Green Catalysts for Precision Macromolecular Synthesis. Chem. Rev. 2016, 116, 2307–2413.
  • Fischer, E. Einfluss der configuration auf die wirkung der enzyme. Ber. Dtsch. Chem. Ges. 1894, 27, 2985–2993.
  • Saha, M.; Pal, A. K. Fermented Baker’s Yeast: An Efficient Catalyst for the Synthesis of Pyran Derivatives in Water at Room Temperature. Synth. Commun. 2013, 43, 1708–1713.
  • Farhadpour, F., Hazeri, N., Salahi, S., Dastoorani, P., Doostmohammadi, R., Lashkari, M., Ghashang, M., Maghsoodlou, M. T. Maltose as a Green Catalyst for the Synthesis of 3,4,5-Substituted Furan-2(5H) Ones in Water. Iran. J. Catal. 2014, 4, 247–251.
  • Narayan, S.; Muldoon, J.; Finn, M. G.; Fokin, V. V.; Kolb, H. C.; Sharpless, K. B. “On Water”: Unique Reactivity of Organic Compounds in Aqueous Suspension. Angew. Chem. Int. Ed. 2005, 44, 3275–3279.
  • Rieber, N.; Alberts, J.; Lipsky, J. A.; Lemal, D. M. Δ-1–1,2-Diazetines. J. Am. Chem. Soc. 1969, 91, 5668–5669.
  • ] Klas, K.; Tsukamoto, S.; Sherman, D. H.; Williams, R. M. Natural Diels-Alderases: Elusive and irresistable. J. Org. Chem. 2015, 80, 11672–11685.
  • Dalal, K. S.; Tayade, Y. A.; Wagh, Y. B.; Trivedi, D. R.; Dalal, D. S.; Chaudhari, B. L. Bovine Serum Albumin Catalyzed One-Pot, Three Component Synthesis of Dihydropyrano[2,3-c]pyrazole Derivatives in Aqueous Ethanol. RSC Adv. 2016, 6, 14868–14879.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.