Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 48, 2018 - Issue 2
313
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

[3 + 2] Cycloaddition promoted by zinc oxide nanoparticles anchored on reduced graphene oxide using green solvent

ORCID Icon & ORCID Icon
Pages 175-187 | Received 13 May 2017, Published online: 26 Dec 2017

References

  • Huisgen, R.; Sauer, J.; Sturn, H. J.; Markgraf, J. H. Ring Opening of Azoles. II. The Formation of 1,3,4-Oxadiazoles in the Acylation of 5-Substituted Tetrazoles. Chem. Ber. 1960, 93, 2106–2124. DOI: 10.1021/jo01088a034.
  • Herr, R. J. 5-Substituted-1H-Tetrazoles as Carboxylic Acid Isosteres: Medicinal Chemistry and Synthetic Methods. Bioorg. Med. Chem. 2002, 10, 3379–3393. DOI: 10.1016/s0968-0896(02)00239-0.
  • Dolusic, E.; Larrieu, P.; Moineaux, L.; Stroobant, V.; Pilotte, L.; Colau, D.; Pochet, L.; Van den Eynde, B. T.; Masereel, B.; Wouters, J. Tryptophan 2,3-Dioxygenase (TDO) Inhibitors. 3-(2-(Pyridyl)Ethenyl)Indoles as Potential Anticancer Immunomodulators. J. Med. Chem. 2011, 54, 5320–5334. DOI: 10.1021/jm2006782.
  • Himo, F.; Demko, Z. P.; Noodleman, L.; Sharpless, K. B. Mechanism of Tetrazole Formation by Addition of Azide to Nitriles. J. Am. Chem. Soc. 2002, 124, 12210–12216. DOI: 10.1021/ja0206644.
  • Chruscinska, E. L.; Sanna, D.; Micera, G.; Olejnik, J.; Nachman, R. J.; Zabrocki, J. Chelating Ability of Proctolin Tetrazole Analogue. Acta Biochim. Pol. 2006, 53, 65–72.
  • Beusen, D. D.; Zabrocki, J.; Slomczynska, U.; Head, R. D.; Kao, J. L. F.; Marshall, G. R. Conformational Mimicry: Synthesis and Solution Conformation of a Cyclic Somatostatin Hexapeptide Containing a Tetrazole Cis Amide Bod Surrogate. Biopolymers 1995, 36(2), 181–200. DOI: 10.1002/bip.360360207.
  • Knudsen, K. R.; Mitchell, C. E. T.; Ley, S. V. Asymmetric Organocatalytic Conjugate Addition of Malonates to Enones Using a Proline Tetrazole. Chem. Commun. 2006, 1, 66–68. DOI: 10.1039/b514636d.
  • Sikdar, S. K.; Howell, S. G. On Developing Cleaner Organic Unit Processes. J. Clean. Product. 1998, 6, 253–259. DOI:10.1016/s0959-6526(98)00026-2.
  • Wang, X. S.; Tang, Y. Z.; Huang, X. F.; Qu, Z. R.; Che, C. M.; Chan, P. W. H.; Xiong, R. G. Syntheses, Crystal Structures, and Luminescent Properties of Three Novel Zinc Coordination Polymers with Tetrazolyl Ligands. Inorg. Chem. 2005, 44, 5278–5285. DOI: 10.1021/ic050354x.
  • Modarresi-Alam, A. R.; Khamooshi, F.; Rostamizadeh, M.; Kieykha, H.; Nasrollahzadeh, M.; Bijanzadeh, H. R.; Kleinpeter, E. Dynamic 1H NMR Spectroscopic Study of the Restricted S-N Rotation in Aryl-N-(Arylsulfonyl)-N (Triphenylphosphoranylidene) Imidocarbamates. J. Mol. Struct. 2007, 841, 61–66. DOI: 10.1016/j.molstruc.2006.11.058.
  • Butler, R. N.; Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V., eds. Comprehensive Heterocyclic Chemistry; Pergamon: Oxford, UK, 1996; p 4.
  • Hantzsch, A.; Vagt, A. Ueber das Sogenannte Diazoguanidin. Justus Liebigs Ann. Chem. 1901, 314, 339–369. DOI: 10.1002/jlac.19013140307.
  • Demko, Z. P.; Sharpless, K. B. Preparation of 5-Substituted 1H-Tetrazoles from Nitriles in Water. J. Org. Chem. 2001, 66, 7945–7950. DOI: 10.1021/jo010635w.
  • Demko, Z. P.; Sharpless, K. B. An Expedient Route to the Tetrazole Analogues of α-Amino-Acids. Org. Lett. 2002, 4, 2525–2527. DOI: 10.1002/chin.200248140.
  • Yizhong, Z.; Yiming, R.; Chun, C. One-Pot Synthesis of 5-Substituted 1H-Tetrazoles from Aryl Bromides with Potassium Hexakis(Cyano-kC)Ferrate(4-) (K4[Fe[CN)6]) as Cyanide Sources. Helv. Chim. Acta 2009, 92, 171–175. DOI: 10.1002/chin.200921132.
  • Kantam, M. L.; Shiva Kumar, K. B.; Sridhar, C. Nanocrystalline ZnO as an Efficient Heterogeneous Catalyst for the Synthesis of 5-Substituted 1H-Tetrazoles. Adv. Synth. Catal. 2005, 347, 1212–1214. DOI: 10.1002/adsc.200505011.
  • Rostamizadeh, S.; Ghaieni, H.; Aryan, R.; Amani, A. Zinc Chloride Catalyzed Synthesis of 5-Substituted 1H-Tetrazoles Under Solvent Free Condition. Chin. Chem. Lett. 2009, 20, 1311–1314. DOI: 10.1016/j.cclet.2009.06.020.
  • Kantam, M. L.; Shiva Kumar, K. B.; Phani Raja, K. J. An Efficient Synthesis of 5-Substituted 1H-Tetrazoles Using Zn/Al Hydrotalcite Catalyst. J. Mol. Catal. A Chem. 2006, 247, 186–188. DOI: 10.1016/j.molcata.2005.11.046.
  • Hajra, S.; Sinha, D.; Bhowmick, M. Metal Triflate Catalyzed Reactions of Alkenes, NBS, Nitriles, and TMSN3: Synthesis of 1,5-Disubstituted Tetrazoles. J. Org. Chem. 2007, 72, 1852–1855. DOI: 10.1002/chin.200728128.
  • Kantam, M. L.; Balasubramanyam, V.; Shiva Kumar, K. B. Zinc Hydroxyapatite–Catalyzed Efficient Synthesis of 5-Substituted 1H-Tetrazoles. Synth. Commun. 2006, 36, 1809–1814. DOI: 10.1002/chin.200642129.
  • Lang, L.; Li, B.; Liu, W.; Jiang, L.; Xu, Z.; Yin, G. Mesoporous ZnS Nanospheres: A High Activity Heterogeneous Catalyst for Synthesis of 5-Substituted 1H-Tetrazoles from Nitriles and Sodium Azide. Chem. Commun. 2010, 46, 448–450. DOI: 10.1039/b912284b.
  • Agawane, S. M.; Nagarkar, J. M. Synthesis of 5-Substituted 1H-Tetrazoles Using a Nano ZnO/Co3O4 Catalyst. Catal. Sci. Technol. 2012, 2, 1324–1327. DOI: 10.1039/c2cy20094e.
  • Nasrollahzadeh, M.; Bayat, Y.; Habibi, D.; Moshaee, S. FeCl3 SiO2 as a Reusable Heterogeneous Catalyst for the Synthesis of 5-Substituted 1H-Tetrazoles via [2 + 3] Cycloaddition of Nitriles and Sodium Azide. Tetrahedron Lett. 2009, 50, 4435–4438. DOI: 10.1016/j.tetlet.2009.05.048.
  • Bonnamour, J.; Bolm, C. Iron Salts in the Catalysed Synthesis of 5-Substituted 1H-Tetrazoles. Chem. Eur. J. 2009, 15, 4543–4545. DOI: 10.1002/chin.200935137.
  • Sreedhar, B.; Kumar, A. S.; Yadav, D. CuFe2O4 Nanoparticles: A Magnetically Recoverable and Reusable Catalyst for the Synthesis of 5-Substituted 1H-Tetrazoles. Tetrahedron Lett. 2011, 52, 3565–3569. DOI: 10.1016/j.tetlet.2011.04.094.
  • Venkateshwarlu, G.; Premalatha, A.; Rajanna, K. C.; Saiprakash, P. K. Cadmium Chloride as an Efficient Catalyst for Neat Synthesis of 5-Substituted 1H-Tetrazoles. Synth. Commun. 2009, 39, 4479–4485. DOI: 10.1002/chin.201015128.
  • Kumar, A.; Narayanan, R.; Shechter, H. Rearrangement Reactions of (Hydroxyphenyl) Carbenes. J. Org. Chem. 1996, 61, 4462–4465. DOI: 10.1021/jo952269k.
  • Mani, P.; Singh, A. K.; Awasthi, S. K. AgNO3 Catalyzed Synthesis of 5-Substituted-1H-Tetrazole via [3 + 2] Cycloaddition of Nitriles and Sodium Azide. Tetrahedron Lett. 2014, 55, 1879–1882. DOI: 10.1016/j.tetlet.2014.01.117.
  • Bosch, L.; Vilarrasa, J. Cu2 (OTf)2-Catalyzed and Microwave-Controlled Preparation of Tetrazoles from Nitriles and Organic Azides under Mild, Safe Conditions. Angew. Chem. 2007, 46, 3926–3930. DOI: 10.1002/chin.200736116.
  • Patil, D. R.; Wagh, Y. B.; Ingole, P. G.; Singh, K.; Dalal, D. S. β-Cyclodextrin-Mediated Highly Efficient [2 + 3] Cycloaddition Reactions for the Synthesis of 5-Substituted-1H-Tetrazoles. New J. Chem. 2013, 37, 3261–3266. DOI: 10.1039/c3nj00569k.
  • Rama, V.; Kanagaraj, K.; Pitchumani, K. Syntheses of 5-Substituted 1H-Tetrazoles Catalyzed by Reusable CoY Zeolite. J. Org. Chem. 2011, 76, 9090–9095. DOI: 10.1021/jo201261w.
  • Mani, P.; Sharma, C.; Kumar, S.; Awasthi, S. K. Efficient Heterogeneous Silver Nanoparticles Catalysed One-Pot Synthesis of 5-Substituted-1H-Tetrazoles. J. Mol. Catal. A Chem. 2014, 392, 150–156. DOI: 10.1016/j.molcata.2014.05.008.
  • Kong, D.; Liu, Y.; Zhang, J.; Li, H.; Wang, X.; Liu, G.; Li, B.; Xu, Z. Hierarchically Porous AIPO-5-Based Microspheres as Heterogeneous Catalysts for the Synthesis of 5-Substituted 1H-Tetrazoles via [3 + 2] Cycloaddition. New J. Chem. 2014, 38, 3078–3083. DOI: 10.1002/chin.201450138.
  • Dehghani, F.; Sardarian, A. R.; Esmaeilpour, M. Salen Complex of Cu (II) Supported on Superparamagnetic Fe3O4 @SiO2 Nanoparticles: An Efficient and Recyclable Catalyst for the Synthesis of 1- and 5-Substituted 1H-Tetrazole. J. Organomet. Chem. 2013, 743, 87–96. DOI: 10.1016/j.jorganchem.2013.06.019.
  • Aridoss, G.; Laali, K. K. Highly Efficient Synthesis of 5-Substituted 1H-Tetrazoles Catalyzed by Cu-Zn Alloy Nanopowder, Conversion into 1,5- and 2,5-Disubstituted Tetrazoles, and Synthesis and NMR Studies of New Tetrazolium Ionic Liquids. Eur. J. Org. Chem. 2011, 31, 6343–6355. DOI: 10.1002/chin.201212125.
  • Razavi, N.; Akhlaghinia, B. Cu (II) Immobilized on Aminated Epichlorohydrin Activated Silica (CAES): As a New, Green and Efficient Nanocatalyst for Preparation of 5-Substituted-1H-Tetrazoles. RSC Adv. 2015, 5, 12372–12387. DOI: 10.1039/c4ra15148h.
  • Akhlaghinia, B.; Rezazadeh, S. A Novel Approach for the Synthesis of 5-Substituted-1H-Tetrazoles. J. Braz. Chem. Soc. 2012, 23, 2197–2203. DOI: 10.1590/s0103-50532013005000005.
  • Ghodsinia, S. E.; Akhlaghinia, B. A Rapid Metal Free Synthesis of 5-Substituted-1H-Tetrazoles Using Cuttlebone as a Natural High Effective and Low Cost Heterogeneous Catalyst. RSC Adv. 2015, 5, 49849–49860. DOI: 10.1039/c5ra08147e.
  • Simon, M. O.; Li, C. J. Green Chemistry Oriented Organic Synthesis in Water. Chem. Soc. Rev. 2012, 41, 1415–1427. DOI: 10.1039/c1cs15222j.
  • Wang, J.; Suzuki, T. T.; Tang, B.; Sun, L.; Dai, X.; Rajmohan, G. D.; Li, J.; Wang, X. Recyclable Textiles Functionalized with Reduced Graphene Oxide @ ZnO for Removal of Oil Spills and Dye Pollutants. Aust. J. Chem. 2014, 67, 71–77. DOI: 10.1071/ch13323.
  • Burak, A.; Yunus, Y.; Ramazan, U.; Sinan, E.; Faith, S.; Muharrem, K. One Pot, Efficient and Green Synthesis of Acridinedione Derivatives Using Highly Monodisperse Platinum Nanoparticles Supported with Reduced Graphene Oxide. New J. Chem. 2016, 40,748–754. DOI: 10.1039/c5nj02098k.
  • Goswami, N.; Sharma, D. K. Structural and Optical Properties of Unannealed and Annealed ZnO Nanoparticles Prepared by a Chemical Precipitation Technique. Phys. E Low Dimens. Syst. Nanostruct. 2010, 42(5), 1675–1682. DOI: 10.1016/j.physe.2010.01.023.
  • Ping, L.; Xudong, C.; Jian-Bing, Z.; Lin, G.; Ming, W. Enhancement of the Interfacial Interaction Between Poly(Vinyl Chloride) and Zinc Oxide Modified Reduced Graphene Oxide. RSC Adv. 2016, 6, 5784–5791. DOI: 10.1039/c5ra20893a.
  • Huang, K.; Li, Y. H.; Lin, S.; Liang, C.; Wang, H.; Ye, C. X.; Wang, Y. J.; Zhang, R.; Fan, D. Y.; Yang, H. J.; Wang, Y. G.; Lei, M. A Facile Route to Reduced Graphene Oxide-Zinc Oxide Nanorod Composites with Enhanced Photocatalytic Activity. Powder Technol. 2014, 257, 113–119. DOI: 10.1016/j.powtec.2014.02.047.
  • Yang, Y.; Liu, T. X. Fabrication and Characterization of Graphene Oxide/Zinc Oxide Nanorods Hybrid. Appl. Surf. Sci. 2011, 257, 8950–8954. DOI: 10.1016/j.apsusc.2011.05.070.
  • Lempers, H. E. B.; Sheldon, R. A. The Stability of Chromium in CrAPO-5, CrAPO-11, and CrS-1 During Liquid Phase Oxidations. J. Catal. 1998, 175, 62–69. DOI: 10.1006/jcat.1998.1979.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.