Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 48, 2018 - Issue 16
351
Views
27
CrossRef citations to date
0
Altmetric
Original Articles

An efficient multicomponent synthesis and in vitro anticancer activity of dihydropyranochromene and chromenopyrimidine-2,5-diones

, , , &
Pages 2046-2060 | Received 20 Mar 2018, Published online: 11 Jul 2018

References

  • (a) Thakur, A.; Singla, R.; Jaitak, V. Coumarins as Anticancer Agents: A Review on Synthetic Strategies, Mechanism of Action and SAR Studies. Euro. J. Med. Chem. 2015, 101, 476–495. (b) Hamulakova, S.; Janovec, L.; Hrabinova, M.; Spilovska, K.; Korabecny, J.; Kristian, P.; Kuca, K.; Imrich, J. Synthesis and Biological Evaluation of Novel Tacrine Derivatives and Tacrine-coumarin Hybrids as Cholinesterase Inhibitors. J. Med. Chem. 2014, 57, 7073–7084. (c) Anaraki-Ardakani, H. Efficient Synthesis of Pyranochromene Derivatives via Three-component Reaction of 4-hydroxy-6-methylpyran-1-one with Aromatic Aldehydes and Cyclic 1,3-diketone Catalyzed by ZnO Nanoparticles. Russian J. Gen. Chem. 2017, 87, 1820–1825. (d) Ellis, G. P. In Chromenes, Chromenes and Chromenes; Wiley: New York, 1977; Vol. 31, pp 11.
  • Adbel Aziz Hafez, E.; Abdel Aziz Hafez, E.; Hilmy Elnagdi, M.; Ghani Ali Elagamey, A.; Mohamed Abdel Aziz El-Taweel, F. Nitriles in Heterocyclic Synthesis: Novel Synthesis of Benzo[c]Coumarin and of Benzo[c]Pyrano[3,2-c]Quinoline Derivatives. Heterocycles 1987, 26, 903. DOI:10.3987/R-1987-04-0903.
  • Tanabe, A.; Nakashima, H.; Yoshida, O.; Yamamoto, N.; Tenmyo, O.; Oki, T. Inhibitory Effect of New Antibiotic, Pradimincin A on Infectivity, Cytopathic Effect and Replication of Human Immunodeficiency Virus In Vitro. J. Antibiot. 1988, 41, 1708. DOI:10.7164/antibiotics.41.1708.
  • Shijay, G.; Cheng, H. T.; Chi, T.; Ching-Fa, Y. Fluoride Ion Catalyzed Multicomponent Reactions for Efficient Synthesis of 4H-chromene and N-arylquinoline Derivatives in Aqueous Media. Tetrahedron 2008, 64, 9143.
  • Bolognese, A.; Correale, G.; Manfra, M.; Lavecchia, A.; Mazzoni, O.; Novellino, E.; La Colla, P.; Sanna, G.; Loddo, R. Antitumor Agents. 3. Design, Synthesis, and Biological Evaluation of New Pyridoisoquinolindione and Dihydrothienoquinolindione Derivatives with Potent Cytotoxic Activity. J. Med. Chem. 2004, 47, 849. DOI:10.1021/jm030918b.
  • Bayer, T. A.; Schafer, S.; Breyh, H.; Breyhan, O.; Wirths, C.; Treiber, G. A. A Vicious Circle: Role of Oxidative Stress, Intraneuronal Abeta and Cu in Alzheimer’s Disease. Clin. Neuropathol. 2006, 25, 163.
  • (a) Fokialakis, N.; Magiatis, P.; Chinou, L.; Mitaka, S.; Tillequin, F. Megistoquinones, I, II. Two Quinoline Alkaloids with Antibacterial Activity from the bark of Sarcomelicope megistophylla. Chem. Pharm. Bull. 2002, 50, 413. (b) Beagley, P.; Blackie, M. A. L.; Chibale, K.; Clarkson, C.; Meijboom, R.; Moss, J. R.; Smith, P.; Su, H. Synthesis and Antiplasmodial Activity In Vitro of New Ferrocene–Chloroquine Analogues. Dalton Trans. 2003, 15, 3046.
  • Abdel Galil, B. F. M.; Riad, Y.; Sherif, S. M.; Elnagdi, M. H. Activated Nitriles in Heterocyclic Synthesis: A Novel Synthesis of 4-Azoloyl-2-Aminoquinolines. Chem. Lett. 1982, 11, 1123. DOI:10.1246/cl.1982.1123.
  • Hepworth, J.; Katrizky, A. R., Rees, C. W., Eds.; Comprehensive Heterocyclic Chemistry. Pergamon Press: Oxford, UK, 1984; Vol. 3, pp 737.2.
  • Makawana, J. A.; Patel, M. P.; Patel, R. G. Synthesis and Antimicrobial Evaluation of New Pyrano[4,3-b]Pyran and Pyrano[3,2-c]Chromene Derivatives Bearing a 2-Thiophenoxyquinoline Nucleus. Arch. Pharm. 2012, 345, 314–322. DOI:10.1002/ardp.201100203.
  • (a) Emmadi, N. R.; Atmakur, K.; Chityal, G. K.; Pombala, S.; Nanubolu, J. B. Synthesis and Cytotoxicity Evaluation of Highly Functionalized Pyranochromenes and Pyranopyrans. Bioorg. Med. Chem. Lett. 2012, 22, 7261–7264. (b) Wu, J. Y. C.; Fong, W. F.; Zhang, J. X.; Leung, C. H.; Kwong, H. L.; Yang, M. S.; Li, D.; Cheung, H. Y. Reversal of Multidrug Resistance in Cancer Cells by Pyranocoumarins Isolated from Radix Peucedani. Eur. J. Pharmacol. 2003, 473, 9–17. (c) Rahimi, R.; Mahdavi, M.; Pejman, S.; Zare, P.; Balalaei, S. Inhibition of Cell Proliferation and Induction of Apoptosis in K562 Human Leukemia Cells by the Derivative (3-NpC) from dihydro-pyranochromenes Family. Acta Biochim. Pol. 2015, 62, 83–88. DOI:10.1016/j.bmcl.2012.09.018.
  • (a) Kumar, A.; Maurya, R. A.; Sharma, S. A.; Ahmad, P.; Singh, A. B.; Bhatia, G.; Srivastava, A. K. Pyranocoumarins: A New Class of Anti-Hyperglycemic and Anti-Dyslipidemic Agents. Bioorg. Med. Chem. Lett. 2009, 19, 6447. (b) Paul, S.; Bhattacharyya, P.; Das, A. R. One-pot Synthesis of Dihydropyrano[2,3-c]chromenes via a Three Component Coupling of Aromatic aldehydes, Malononitrile, and 3-hydroxycoumarin Catalyzed by Nano-structured ZnO in Water: A Green Protocol. Tetrahedron Lett. 2011, 52, 4636–4641. DOI:10.1016/j.bmcl.2009.09.031.
  • Wang, H. J.; Lu, J.; Zhang, Z.-H. Highly Efficient Three-Component, One-Pot Synthesis of Dihydropyrano[3,2-c]Chromene Derivatives. Monatsh. Chem. 2010, 141, 1107–1112. DOI:10.1007/s00706-010-0383-4.
  • (a) Mansoor, S. S.; Logaiya, K.; Aswin, K.; Sudhan, P. N. Tribromo Melamine-catalyzed One-pot Synthesis of a Series of 4-aryl-4,5-dihydro-1H-indeno[1,2-b]pyridine derivatives. Taibah J. Univ. Sci. 2015, 9, 213–226; DOI:10.1016/j.jtusci.2014.09.008. (b) Kashman, Y.; Gustafson, K. R.; Fuller, R. W.; Cardellina, J. H.; Mcmahon, J. B.; Currens, M. J.; Buckheit, R. W.; Hughes, S. H.; Cragg, G. M.; Boyd, M. R. The Calanolides, a Novel HIV-inhibitory Class of Coumarin Derivatives from the Tropical Rainforest tree, Calophyllum lanigerum. J. Med. Chem. 1992, 35, 2735–2743. (c) Patil, A. D.; Freyer, A. J.; Eggleston, D. S.; Haltiwanger, R. C.; Bean, M. F.; Taylor, P. B.; Caranfa, M. J.; Breen, A. L.; Bartus, H. R. The Inophyllums, Novel Inhibitors of HIV-1 Reverse Transcriptase Isolated from the Malaysian tree, Calophyllum inophyllum Linn. J. Med. Chem. 1993, 36, 4131–4138.
  • (a) Symeonidis, T.; Chamilos, M.; Hadjipavlou-Litina, D. J.; Kallitsakis, M.; Litinas, K. E. Synthesis of Hydroxycoumarins and Hydroxybenzo[f]- or [h]Coumarins as Lipid Peroxidation Inhibitors. Bioorg. Med. Chem. Lett. 2009, 19, 1139. DOI:10.1016/j.bmcl.2008.12.098.
  • Coudert, P.; Coyquelet, J. M.; Bastide, J.; Marion, Y.; Fialip. J. Synthesis and Anti-allergic Properties of N-arylnitrones with Furopyran Structure. Ann. Pharm. Fr. 1988, 46, 91.
  • Kaur, R.; Naaz, F.; Bedi, P. M. S.; Sharma, S.; Nepali, K.; Mehndiratta, S.; Gupta, M. K. Screening of a Library of 4-Aryl/Heteroaryl-4H-Fused Pyrans for Xanthine Oxidase Inhibition: Synthesis, Biological Evaluation and Docking Studies. Med. Chem. Res. 2015, 24, 3334–3349. DOI:10.1007/s00044-015-1382-0.
  • Khoobi, M.; Alipour, M.; Sakhteman, A. H.; Moradi, A.; Ghandi, M.; Emami, S.; Nadri, H.; Foroumadi, A.; Shafiee, A. Design, Synthesis, Biological Evaluation and Docking Study of 5-Oxo-4,5-Dihydropyrano[3,2-c]Chromene Derivatives as Acetylcholinesterase and Butyrylcholinesterase Inhibitors. Eur. J. Med. Chem. 2013, 68, 260–269. DOI:10.1016/j.ejmech.2013.07.038.
  • Rafinejad, A.; Fallah-Tafti, A.; Tiwari, R.; Shirazi, A. N.; Mandal, D.; Parang, K.; Foroumadi, A.; Akbarzadeh, T.; Shafiee, A. 4-Aryl-4H-Naphthopyrans Derivatives: One-Pot Synthesis, Evaluation of Src Kinase Inhibitory and anti-Proliferative Activities. Daru 2012, 20, 100. DOI:10.1186/2008-2231-20-100.
  • Anderson, G. L.; Shim, J. L.; Broom, A. D. Pyrido(2,3-d)Pyrimidines. IV. Synthetic Studies Leading to Various Oxopyrido(2,3-d)Pyrimidines. J. Org. Chem. 1976, 41, 1095.
  • Grivsky, E. M.; Lee, S.; Sigel, C. W.; Duch, D. S.; Nichol, C. A. Synthesis and Antitumor Activity of 2,4-Diamino-6-(2,5-Dimethoxybenzyl)-5-Methylpyrido[2,3-d]Pyrimidine. J. Med. Chem. 1980, 23, 327–329. DOI:10.1021/jm00177a025.
  • Heber, D.; Heers, C.; Ravens, U. Positive Inotropic Activity of 5-Amino-6-Cyano-1,3-Dimethyl-1,2,3,4-Tetrahydropyrido[2,3-d]Pyrim Idine-2,4-Dione in Cardiac Muscle from Guinea-Pig and Man. Part 6: Compounds with Positive Inotropic Activity. Pharmazie 1993, 48, 537–541.
  • Sakuma, Y.; Hasegawa, M.; Kataoka, K.; Hoshina, K.; Yamazaki, N.; Kadota, T.; Yamaguchi, H. H.. PCT Int. Appl. WO 9105785, 1989. Chem. Abstr. 1991, 115, 71646.
  • Bennett, L. R.; Blankley, C. J.; Fleming, R. W.; Smith, R. D.; Tessman, D. K. Antihypertensive Activity of 6-Arylpyrido[2,3-d]Pyrimidin-7-Amine Derivatives. J. Med. Chem. 1981, 24, 382. DOI:10.1021/jm00136a006.
  • Davoll, J.; Clarke, J.; Elslager, E. F. Folate Antagonists. 4. Antimalarial and Antimetabolite Effects of 2,4-Diamino-6-((Benzyl)Amino)Pyrido(2,3-d)-Pyrimidines. J. Med. Chem. 1972, 15, 837. DOI:10.1021/jm00278a009.
  • Kretzschmer, E. Derivatives of 4-oxo-3,4-dihydropyrido[2,3-d]pyrimidine. Pharmazie. 1980, 35, 253.
  • Azarifar, D.; Badalkhani, O.; Abbasi, Y.; Hasanabadi, M. Urea-Functionalized Silica-Coated Fe3 − x Tix O4 Magnetic Nanoparticles: As Highly Efficient and Recyclable Heterogeneous Nanocatalyst for Synthesis of 4H-Chromene and 1H-Pyrazolo[1,2-b]Phthalazine-5,10-Dione Derivatives. J. Iran. Chem. Soc. 2017, 14, 403–418. DOI:10.1007/s13738-016-0989-5.
  • Kiyani, H.; Sadat Jalali, M. Facial and Efficient Access to Dihydropyrano[3,2-c]Chromenes via Three-Component Reaction Using N,N-Dimethylbenzylamine as a New Organocatalyst. Comb. Chem. High Throughput Screen. 2016, 19, 275–282. DOI:10.2174/1386207319666160310144315.
  • (a) Balalaie, S.; Abdolmohammadi, S. Novel and Efficient Catalysts for the One-pot Synthesis of 3, 4-dihydropyrano [c] chromene Derivatives in Aqueous Media. Tetrahedron Lett. 2007, 48, 3299. (b) Khurana, J. M.; Kumar, S. Tetrabutylammonium bromide (TBAB): A Neutral and Efficient Catalyst for the Synthesis of Biscoumarin and 3,4-dihydropyrano[c]chromene Derivatives in Water and Solvent-free Conditions. Tetrahedron Lett. 2009, 50, 4125–4127.
  • Brahmachari, G.; Banerjee, B. Facile and One-Pot Access to Diverse and Densely Functionalized 2-Amino-3-Cyano-4 H-Pyrans and Pyran-Annulated Heterocyclic Scaffolds via an Eco-Friendly Multicomponent Reaction at Room Temperature Using Urea as a Novel Organo-Catalyst. ACS Sustainable Chem. Eng. 2014, 2, 411–422. DOI:10.1021/sc400312n.
  • Heravi, M. M.; Alimadadi Jani, B.; Derikvand, F.; Bamoharram, F. F.; Oskooie, H. A. Three Component, One-Pot Synthesis of Dihydropyrano[3,2-c]Chromene Derivatives in the Presence of H6P2W18O62·18H2O as a Green and Recyclable Catalyst. Catal. Commun. 2008, 10, 272. DOI:10.1016/j.catcom.2008.08.023.
  • Seifi, M.; Sheibani, H. High Surface Area MgO as a Highly Effective Heterogeneous Base Catalyst for Three-Component Synthesis of Tetrahydrobenzopyran and 3,4-Dihydropyrano[c]Chromene Derivatives in Aqueous Media. Catal. Lett. 2008, 126, 275. DOI:10.1007/s10562-008-9603-5.
  • Peng, Y.; Song, G. Amino-functionalized Ionic Liquid as Catalytically Active Solvent for Microwave-assisted Synthesis of 4H-pyrans. Catal. Commun. 2007, 8, 111. DOI:10.1016/j.catcom.2006.05.031.
  • Jin, T.-S.; Liu, L.-B.; Zhao, Y.; Li, T.-S. Clean, One‐Pot Synthesis of 4 H‐Pyran Derivatives Catalyzed by Hexadecyltrimethyl Ammonium Bromide in Aqueous Media. Synth. Commun. 2005, 35, 1859. DOI:10.1081/SCC-200064898.
  • Mohammadi Ziarani, G.; Badiei, A.; Azizi, M.; Zarabadi, P. Synthesis of 3, 4-dihydropyrano [c] chromene Derivatives using Sulfonic Acid Functionalized Silica (SiO2PrSO3H). Iran. J. Chem. Chem. Eng. 2011, 30, 59.
  • Seshu, B. N.; Pasha, N.; Venkateswara, R. K. T.; Sai, P. P. S.; Lingaiah, N. A Heterogeneous Strong Basic Mg/La Mixed Oxide Catalyst for Efficient Synthesis of Polyfunctionalized Pyrans. Tetrahedron Lett. 2008, 49, 2730. DOI:10.1016/j.tetlet.2008.02.154.
  • Banerjee, S.; Horn, A.; Khatri, H.; Sereda, G. A Green One-Pot Multicomponent Synthesis of 4H-Pyrans and Polysubstituted Aniline Derivatives of Biological, Pharmacological, and Optical Applications Using Silica Nanoparticles as Reusable Catalyst. Tetrahedron Lett. 2011, 52, 1878. DOI:10.1016/j.tetlet.2011.02.031.
  • Nagabhushana, H.; Saundalkar, S. S.; Muralidhar, L.; Nagab-Hushana, B. M.; Girija, C. R.; Nagaraja, D.; Pasha, M. A.; Jayashankara, V. P. α-Fe2O3 Nanoparticles: An Efficient, Inexpensive Catalyst for the One-Pot Preparation of 3,4-Dihydropyrano[c]Chromenes. Chin. Chem. Lett. 2011, 22, 143. DOI:10.1016/j.cclet.2010.09.020.
  • Niknam, K.; Piran, A. Silica-Grafted Ionic Liquids as Recyclable Catalysts for the Synthesis of 3,4-Dihydropyrano[c]Chromenes and Pyra-No[2,3-c]Pyrazoles. Green Sustainable Chem. 2013, 3, 1–8. DOI:10.4236/gsc.2013.32A001.
  • Kong, D.; Wang, Q.; Zhu, Z.; Wang, X.; Shi, Z.; Lin, Q.; Wu, M. Convenient One-Pot Synthesis of Thiobarbituro-Quinoline Derivatives via Catalyst-Free Multicomponent Reactions in Water. Tetrahedron Lett. 2017, 58, 2644–2647. DOI:10.1016/j.tetlet.2017.05.047.
  • (a) Bandini, M.; Tragni, M. π-Activated Alcohols: An Emerging Class of Alkylating Agents for Catalytic Friedel?Crafts Reactions. Org. Biomol. Chem. 2009, 7, 1501. (b) Rueping, M.; Nachtsheim, B. J. A Review of New Developments in the Friedel–Crafts alkylation – From Green Chemistry to Asymmetric Catalysis. Beilstein J. Org. Chem. 2010, 6; DOI:10.1039/b823217b (c) Kumar, R.; Van der Eycken, E. V. Recent Approaches for C–C bond Formation via Direct Dehydrative Coupling Strategies. Chem. Soc. Rev. 2013, 42, 1121. (d) Domling, A. Recent Developments in Isocyanide Based Multicomponent Reactions in Applied Chemistry. Chem. Rev. 2006, 106, 17. (e) Raman, D. J.; Yus, M. Asymmetric Multicomponent Reactions (AMCRs): The New Frontier. Angew. Chem., Int. Ed. 2005, 44, 1602. (f) Fu, S.; Wang, L.; Dong, H.; Yu, J.; Xu, L.; Xiao, J. Facile Synthesis of 2-alkenylazaarenes via Dehydrative Coupling of 2-methylazaarenes with Aldehydes ‘on water’. Tetrahedron Lett. 2016, 57, 4533–4536.
  • Szejtli, J. Introduction and General Overview of Cyclodextrin Chemistry. Chem. Rev. 1998, 98, 1743. DOI:10.1021/cr970022c.
  • (a) Loftsson, T.; Brewester, M. E. Pharmaceutical Applications of Cyclodextrins. 1. Drug Solubilization and Stabilization. J Pharm. Sci. 1996, 85, 1017–1025. (b) Loftsson, T.; Jarho, P.; Masson, M.; Jarvinen, T. Cyclodextrins in Drug Delivery. Expert Opin. Drug Deliv. 2005, 2, 1–17. (c) Challa, R.; Ahuja, A.; Ali, J.; Khar, R. K. Cyclodextrins in Drug Delivery: An Updated Review. AAPS PharmSciTech. 2005, 6, E329–E357.
  • (a) Breslow, R.; Dong, S. D. Biomimetic Reactions Catalyzed by Cyclodextrins and Their Derivatives. Chem. Rev. 1998, 98, 1997–2011. (b) Shin, J.; Lim, Y.-G.; Lee, K.-H. Copper-catalyzed Azide-alkyne Cycloaddition Reaction in Water Using Cyclodextrin as a Phase Transfer Catalyst. J. Org. Chem. 2012, 77, 4117–4122. (c) Reddy, G. R.; Reddy, T. R.; Chary, R. G.; Joseph, S. C.; Mukherjee, S.; Pal, M. β-Cyclodextrin Mediated MCR in Water: Synthesis of dihydroisoindolo [2, 1-a] quinazoline-5, 11-dione Derivatives Under Microwave Irradiation. Tetrahedron Lett. 2013, 54, 6744–6746.
  • (a) Ghorad, A.; Mahalle, S.; Khillare, L. D.; Sangshetti, J. N.; Bhosle, M. R. β-Cyclodextrin as a Biomimetic Catalyst for the Efficient Synthesis of 4-Oxo-pyrido [1, 2-a] Pyrimidine-3-Carbonitrile in Aqueous Medium. Catal. Lett. 2017, 147, 640–648; DOI:10.1007/s10562-017-1983-y. (b) Bhosle, M. R.; Shaikh, D. S.; Khillare, L. D.; Deshmukh, A. R.; Mane, R. A. Diisopropylethylammonium acetate (DIPEAc): An Efficient and Recyclable Catalyst for the Rapid Synthesis of 5-substituted-1 H-tetrazoles. Synth. Comm. 2017, 47, 95–703. (c) Tipale, M. R.; Khillare, L. D.; Deshmukh, A. R.; Bhosle, M. R. An Efficient Four Component Domino Synthesis of Pyrazolopyranopyrimidines using Recyclable Choline Chloride: Urea Deep Eutectic Solvent. J. Hetero. Chem. 2018, 55, 716–728. (d) Bhosle, M. R.; Mali, J. R.; Pal, S.; Srivastava, A. K.; Mane, R. A. Synthesis and Antihyperglycemic Evaluation of New 2-hydrazolyl-4-thiazolidinone-5-carboxylic acids Having Pyrazolyl Pharmacophores. Bioorg. Med. Chem. Lett. 2014, 24, 2651–2654.
  • (a) Takahashi, K. Organic Reactions Mediated by Cyclodextrins. Chem. Rev. 1998, 98, 2013. (b) Hedges, A. R. Industrial Applications of Cyclodextrins. Chem. Rev. 1998, 98, 2035. (c) Bhosale, S. V. Beta-cyclodextrin as a Catalyst in Organic Synthesis. Mini-Rev. Org. Chem. 2007, 4, 231. (d) Hapiot, F.; Tilloy, S.; Monflier, E. Cyclodextrins as Supramolecular Hosts for Organometallic Complexe. Chem. Rev. 2005, 106, 767. (e) Hong-Bing, J.; Dong-Po, S.; Ming, S.; Zhong, L.; Le-Fu, W. Transition Metal-free and Substrate-selective Oxidation of Alcohols using Water as an Only Solvent in the Presence of β-cyclodextrin. Tetrahedron Lett. 2005, 46, 2517. (f) Szeijtli, J. Cyclodextrin Technology. Kluwer Academic Publishers: Dordrecht, 1998; 26. (g) Cao, Y.; Xiao, X.; Li, R.; Guo, Q. 1H NMR Titration and Quantum Calculation for the Inclusion Complexes of Styrene and α-methyl Styrene with α, β and γ-cyclodextrins. J. Mol. Struct. 2003, 660, 73–80. (h) Villalonga, R.; Cao, R.; Fragoso, A. A. Supramolecular Chemistry of Cyclodextrins in Enzyme Technology. Chem. Rev. 2007, 107, 3088. (i) Marchetti, L.; Levine, M. Biomimetic Catalysis. ACS Catal. 2011, 1, 1090–1118.
  • (a) Kiyani, H.; Ghorbani, F. Boric Acid-catalyzed Multi-component Reaction for Efficient Synthesis of 4H-isoxazol-5-ones in Aqueous Medium. Res. Chem. Intermed. 2015, 41, 4031–4046. (b) Niknam, K.; Jamali, A. Silica-Grafted Ionic Liquids as Recyclable Catalysts for the Synthesis of 3,4-Dihydropyrano[c]chromenes and Pyra-no[2,3-c]pyrazoles. Chin. J. Catal. 2012, 33, 1840–1849. (c) Tiwari, J.; Saquib, M.; Singh, S.; Tufail, F.; Singh, M.; Singh, J.; Singh, J. Visible Light Promoted Synthesis of dihydropyrano[2,3-c]Chromenes via a Multicomponent-tandem Strategy Under Solvent and Catalyst Free Conditions. Green Chem. 2016, 18, 3221–3231. (d) Wang, H.-J.; Lu, J.; Zhang, Z.-H. Highly Efficient Three component, one-pot synthesis of dihydropyrano[3,2-c]chromene derivatives. Monatsh. Chem. 2010, 141, 1107–1112; (e) Kidwai, M.; Sapra, P. An Efficient Synthesis of Benzopyranopyrimidines Using Inorganic Solid Support. Synt. Comm. 2002, 32, 1639–1645.
  • (a) Mosman, T. J. Immunol. Methods 1983, 65, 55–63; DOI:10.1016/0022-1759(83)90303-4. (b) Alley, M. C.; Scudiero, D. A.; Monks, A.; Hursey, M. L.; Czerwinski, M. J.; Fine, D. L.; Abbott, B. J.; Mayo, J. G.; Shoemaker, R. H.; Boyd, M. R. Cancer Res. 1988, 48, 589–601.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.