Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 49, 2019 - Issue 11
1,877
Views
9
CrossRef citations to date
0
Altmetric
Articles

Cu-mediated selective bromination of aniline derivatives and preliminary mechanism study

, , , &
Pages 1406-1415 | Received 12 Sep 2018, Accepted 19 Mar 2019, Published online: 22 Apr 2019

References

  • (a) Law, R. P.; Atkinson, S. J.; Bamborough, P.; Chung, C-w.; Demont, E. H.; Gordon, L. J.; Lindon, M.; Prinjha, R. K.; Watson, A. J. B.; Hirst, D. J. Discovery of Tetrahydroquinoxalines as Bromodomain and Extra-Terminal Domain (BET) Inhibitors with Selectivity for the Second Bromodomain. J. Med. Chem. 2018, 61, 4317–4334. DOI: 10.1021/acs.jmedchem.7b01666. (b) Pinto, D. J. P.; Orwat, M. J.; Koch, S.; Rossi, K. A.; Alexander, R. S.; Smallwood, A.; Wong, P. C.; Rendina, A. R.; Luettgen, J. M.; Knabb, R. M.; et al. Discovery of 1-(4-Methoxyphenyl)-7-Oxo-6-(4-(2-Oxopiperidin-1-yl)Phenyl)-4,5,6,7-Tetrahydro- 1 H -Pyrazolo[3,4-c]Pyridine-3-Carboxamide (Apixaban, BMS-562247), a Highly Potent, Selective, Efficacious, and Orally Bioavailable Inhibitor of Blood Coagulation Factor Xa. J. Med. Chem. 2007, 50, 5339–5356. DOI: 10.1021/jm070245n. (c) Liu, J.; Liu, Q.; Yang, X.; Xu, S.; Zhang, H.; Bai, R.; Yao, H.; Jiang, J.; Shen, M.; Wu, X.; et al. Design, Synthesis, and Biological Evaluation of 1,2,4-Triazole Bearing 5-Substituted Biphenyl-2-Sulfonamide Derivatives as Potential Antihypertensive Candidates. Bioorg. Med. Chem. 2013, 21, 7742–7751. DOI: 10.1016/j.bmc.2013.10.017. (d) Flick, A. C.; Ding, H. X.; Leverett, C. A.; Kyne, R. E.; Liu, K. K.-C.; Fink, S. J.; O’Donnell, C. J. Synthetic Approaches to the New Drugs Approved during 2015. J. Med. Chem. 2017, 60, 6480–6515. DOI: 10.1021/acs.jmedchem.7b00010. (e) Planells, M.; Abate, A.; Hollman, D. J.; Stranks, S. D.; Bharti, V.; Gaur, J.; Mohanty, D.; Chand, S.; Snaith, H. J.; Robertson, N. Diacetylene Bridged Triphenylamines as Hole Transport Materials for Solid State Dye Sensitized Solar Cells. J. Mater. Chem. A. 2013, 1, 6949. DOI: 10.1039/C3TA11417A. (f) Zhu, Y.; Higginbotham, A. L.; Tour, J. M. Covalent Functionalization of Surfactant-Wrapped Graphene Nanoribbons. Chem. Mater. 2009, 21, 5284–5291. DOI: 10.1021/cm902939n.
  • Miyaura, N.; Suzuki, A. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. Chem. Rev. 1995, 95, 2457–2483. DOI: 10.1021/cr00039a007.
  • Uenishi, J.; Tanaka, T.; Nishiwaki, K.; Wakabayashi, S.; Oae, S.; Tsukube, H. Synthesis of ι-(Bromomethyl)Bipyridines and Related ι-(Bromomethyl)Pyridinoheteroaromatics: Useful Functional Tools for Ligands in Host Molecules. J. Org. Chem. 1993, 58, 4382–4388. DOI: 10.1021/jo00068a037.
  • Tadesse, S.; Yu, M.; Mekonnen, L. B.; Lam, F.; Islam, S.; Tomusange, K.; Rahaman, M. H.; Noll, B.; Basnet, S. K. C.; Teo, T.; et al. Highly Potent, Selective, and Orally Bioavailable 4-Thiazol-N-(Pyridin-2-yl)Pyrimidin-2-Amine Cyclin-Dependent Kinases 4 and 6 Inhibitors as Anticancer Drug Candidates: Design, Synthesis, and Evaluation. J. Med. Chem. 2017, 60, 1892–1915. DOI: 10.1021/acs.jmedchem.6b01670.
  • Vona, J. A.; Merker, P. C. Brominations Conducted with Pyridinium Bromide Perbromide. J. Org. Chem. 1949, 14, 1048–1050. DOI: 10.1021/jo01158a013.
  • Motati, D. R.; Uredi, D.; Watkins, E. B. A General Method for the Metal-Free, Regioselective, Remote C-H Halogenation of 8-Substituted Quinolines. Chem. Sci. 2018, 9, 1782–1788. DOI: 10.1039/c7sc04107a.
  • (a) Venkateswarlu, K.; Suneel, K.; Das, B.; Reddy, K. N.; Reddy, T. S. Simple Catalyst-Free Regio- and Chemoselective Monobromination of Aromatics Using NBS in Polyethylene Glycol. Synth. Commun. 2008, 39, 215–219. DOI: 10.1080/00397910801911752. (b) Khan, A. H.; Chen, J. S. Synthesis of Breitfussin B by Late-Stage Bromination. Org. Lett. 2015, 17, 3718–3721. DOI: 10.1021/acs.orglett.5b01702. (c) Tang, R.-J.; Milcent, T.; Crousse, B. Regioselective Halogenation of Arenes and Heterocycles in Hexafluoroisopropanol. J. Org. Chem. 2018, 83, 930–938. DOI: 10.1021/acs.joc.7b02920. (d) Hurtley, A. E.; Stone, E. A.; Metrano, A. J.; Miller, S. J. Desymmetrization of Diarylmethylamido Bis(Phenols) through Peptide-Catalyzed Bromination: Enantiodivergence as a Consequence of a 2 Amu Alteration at an Achiral Residue within the Catalyst. J. Org. Chem. 2017, 82, 11326–11336. DOI: 10.1021/acs.joc.7b02339. (e) Saikia, I.; Borah, A. J.; Phukan, P. Use of Bromine and Bromo-Organic Compounds in Organic Synthesis. Chem. Rev. 2016, 116, 6837–7042. DOI: 10.1021/acs.chemrev.5b00400.
  • Kavala, V.; Naik, S.; Patel, B. K. A New Recyclable Ditribromide Reagent for Efficient Bromination under Solvent Free Condition. J. Org. Chem. 2005, 70, 4267–4271. DOI: 10.1021/jo050059u.
  • Adimurthy, S.; Ghosh, S.; Patoliya, P. U.; Ramachandraiah, G.; Agrawal, M.; Gandhi, M. R.; Upadhyay, S. C.; Ghosh, P. K.; Ranu, B. C. An Alternative Method for the Regio- and Stereoselective Bromination of Alkenes, Alkynes, Toluene Derivatives and Ketones Using a Bromide/Bromate Couple. Green Chem. 2008, 10, 232–237. DOI: 10.1039/B713829F.
  • (a) Petrone, D. A.; Ye, J.; Lautens, M. Modern Transition-Metal-Catalyzed Carbon–Halogen Bond Formation. Chem. Rev. 2016, 116, 8003–8104. DOI: 10.1021/acs.chemrev.6b00089. (b) Sehnal, P.; Taylor, R. J. K.; Fairlamb, I. J. S. Emergence of Palladium(IV) Chemistry in Synthesis and Catalysis. Chem. Rev. 2010, 110, 824–889. DOI: 10.1021/cr9003242. (c) Xu, L.-M.; Li, B.-J.; Yang, Z.; Shi, Z.-J. Organopalladium(iv) Chemistry. Chem. Soc. Rev. 2010, 39, 712–733. DOI: 10.1039/B809912J.
  • (a) Bhatt, S.; Nayak, S. K. Copper(II) Bromide: A Simple and Selective Monobromination Reagent for Electron‐Rich Aromatic Compounds. Synth. Commun. 2007, 37, 1381–1388. DOI: 10.1080/00908320701230026. (b) Yang, X.-Y.; Zhao, H.-Y.; Mao, S.; Zhang, S.-Q. Copper-Mediated Monochlorination of Anilines and Nitrogen-Containing Heterocycles. Syn. Commun. 2018, 48, 2708–2714. DOI: 10.1080/00397911.2018.1518531.
  • Menini, L.; da Cruz Santos, J. C.; Gusevskaya, E. V. Copper-Catalyzed Oxybromination and Oxychlorination of Primary Aromatic Amines Using LiBr or LiCl and Molecular Oxygen. Adv. Synth. Catal. 2008, 350, 2052–2058. DOI: 10.1002/adsc.200800223.
  • Li, X.-L.; Wu, W.; Fan, X.-H.; Yang, L.-M. A Facile, Regioselective and Controllable Bromination of Aromatic Amines Using a CuBr2/Oxone® System. RSC Adv. 2013, 3, 12091–12095. DOI: 10.1039/c3ra41664j.
  • Wan, X.; Ma, Z.; Li, B.; Zhang, K.; Cao, S.; Zhang, S.; Shi, Z. Highly Selective C-H Functionalization/Halogenation of Acetanilide. J. Am. Chem. Soc. 2006, 128, 7416–7417. DOI: 10.1021/ja060232j.
  • Huang, Z.; Li, F.; Chen, B.; Lu, T.; Yuan, Y.; Yuan, G. A Sustainable Process for Catalytic Oxidative Bromination with Molecular Oxygen. ChemSusChem. 2013, 6, 1337–1340. DOI: 10.1002/cssc.201300289.
  • (a) Sadhu, P.; Alla, S. K.; Punniyamurthy, T. Pd(II)-Catalyzed Aminotetrazole-Directed Ortho-Selective Halogenation of Arenes. J. Org. Chem. 2013, 78, 6104–6111. DOI: 10.1021/jo400755q. (b) Tian, Q.; Chen, X.; Liu, W.; Wang, Z.; Shi, S.; Kuang, C. Regioselective Halogenation of 2-Substituted-1,2,3-Triazoles via sp2 C–H Activation. Org. Biomol. Chem. 2013, 11, 7830–7833. DOI: 10.1039/C3OB41558A. (c) Yang, X.; Sun, Y.; Sun, T-y.; Rao, Y. Auxiliary-Assisted Palladium-Catalyzed Halogenation of Unactivated C(sp 3 )–H Bonds at Room Temperature. Chem. Commun. 2016, 52, 6423–6426. DOI: 10.1039/C6CC00234J. (d) Zhu, R.-Y.; Saint-Denis, T. G.; Shao, Y.; He, J.; Sieber, J. D.; Senanayake, C. H.; Yu, J.-Q. Ligand-Enabled Pd(II)-Catalyzed Bromination and Iodination of C(sp 3)–H Bonds. J. Am. Chem. Soc. 2017, 139, 5724–5727. DOI: 10.1021/jacs.7b02196. (e) Mboyi, C. D.; Testa, C.; Reeb, S.; Genc, S.; Cattey, H.; Fleurat-Lessard, P.; Roger, J.; Hierso, J.-C. Building Diversity in ortho-Substituted s-Aryltetrazines by Tuning N-Directed Palladium C–H Halogenation: Unsymmetrical Polyhalogenated and Biphenyls-Aryltetrazines. ACS Catal. 2017, 7, 8493–8501. DOI: 10.1021/acscatal.7b03186.
  • Xu, J.; Zhu, X.; Zhou, G.; Ying, B.; Ye, P.; Su, L.; Shen, C.; Zhang, P. Copper(II)-Catalyzed C5 and C7 Halogenation of Quinolines Using Sodium Halides under Mild Conditions. Org. Biomol. Chem. 2016, 14, 3016–3021. DOI: 10.1039/c6ob00169f.
  • Fang, H.; Dou, Y.; Ge, J.; Chhabra, M.; Sun, H.; Zhang, P.; Zheng, Y.; Zhu, Q. Regioselective and Direct Azidation of Anilines via Cu(II)-Catalyzed C-H Functionalization in Water. J. Org. Chem. 2017, 82, 11212–11217. DOI: 10.1021/acs.joc.7b01594.
  • Truong, T.; Klimovica, K.; Daugulis, O. Copper-Catalyzed, Directing Group-Assisted Fluorination of Arene and Heteroarene C–H Bonds. J. Am. Chem. Soc. 2013, 135, 9342–9345. DOI: 10.1021/ja4047125.
  • Castro, C. E.; Gaughan, E. J.; Owsley, D. C. Cupric Halide Halogenations. J. Org. Chem. 1965, 30, 587–592. DOI: 10.1021/jo01013a069.
  • Patel, K. R.; Thakrar, V. H.; Dodiya, D. K.; Solanki, S. K.; Shah, K. J. A process for the preparation of ambroxol. Indian Patent No. IN2013MU01217A, 2015.
  • Yang, L.; Han, J.; Liu, W.; Li, J.; Jiang, L. Conversion of Inhibition Biosensing to Substrate-like Biosensing for Quinalphos Selective Detection. Anal. Chem. 2015, 87, 5270–5277. DOI: 10.1021/acs.analchem.5b00376.
  • Kitamura, Y.; Hashimoto, A.; Yoshikawa, S.; Odaira, J-i.; Furuta, T.; Kan, T.; Tanaka, K. Synthesis of Novel Phenylnaphthyl Phosphines and their Applications to Pd-Catalyzed Intramolecular Amidation. Synlett 2006, 2006, 0115–0117. DOI: 10.1055/s-2005-922780.
  • Klapars, A.; Buchwald, S. L. Copper-Catalyzed Halogen Exchange in Aryl Halides: An Aromatic Finkelstein Reaction. J. Am. Chem. Soc. 2002, 124, 14844–14845. DOI: 10.1021/ja028865v.
  • Das, B.; Venkateswarlu, K.; Krishnaiah, M.; Holla, H. An Efficient, Rapid and Regioselective Nuclear Bromination of Aromatics and Heteroaromatics with NBS Using Sulfonic-Acid-Functionalized Silica as a Heterogeneous Recyclable Catalyst. Tetrahedron Lett. 2006, 47, 8693–8697. DOI: 10.1016/j.tetlet.2006.10.029.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.