Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 49, 2019 - Issue 16
697
Views
41
CrossRef citations to date
0
Altmetric
Articles

Synthesis, antitubercular evaluation and molecular docking studies of phthalimide bearing 1,2,3-triazoles

, , , , , , & show all
Pages 2017-2028 | Received 13 Apr 2019, Published online: 16 May 2019

References

  • World Health Organization (WHO). WHO Global Tuberculosis Report 2018; WHO: Geneve, Switzerland, 2018. http://www.who.int/tb/publications/global_report/en/
  • Jnawali, H. N.; Ryoo, S. Tuberculosis: Current Issues in Diagnosis and Management 2013. DOI: 10.5772/54960.
  • Bian, X.; Wang, Q.; Ke, C.; Zhao, G.; Li, Y. A New Series of N-2-Substituted-5-(p-Toluenesulfonylamino)Phthalimide Analogues as α-Glucosidase Inhibitors. Bioorg. Med. Chem. Lett. 2013, 23, 2022. DOI: 10.1016/j.bmcl.2013.02.011.
  • González, M. A.; Clark, J.; Connelly, M.; Rivas, F. Antimalarial Activity of Abietane Ferruginol Analogues Possessing a Phthalimide Group. Bioorg. Med. Chem. Lett. 2014, 24, 5234–5237. DOI: 10.1016/j.bmcl.2014.09.061.
  • Machado, A. L.; Lima, L. M.; Araújo, J. X.; Jr, Fraga, C. A. M.; Koatz, V. L. G.; Barreiro, E. J. Design, Synthesis and Antiinflammatory Activity of Novel Phthalimide Derivatives, Structurally Related to Thalidomide. Bioorg. Med. Chem. Lett. 2005, 15, 1169–1172. DOI: 10.1016/j.bmcl.2004.12.012.
  • Lamie, P.; Philoppes, J.; El-Gendy, A.; Rarova, L.; Gruz, J. Design, Synthesis and Evaluation of Novel Phthalimide Derivatives as in Vitro Anti-Microbial, Anti-Oxidant and Anti-Inflammatory Agents. Molecules. 2015, 20, 16620–16642. DOI: 10.3390/molecules200916620.
  • Nagarajan, S.; Majumder, S.; Sharma, U.; Rajendran, S.; Kumar, N.; Chatterjee, S.; Singh, B. Synthesis and anti-Angiogenic Activity of Benzothiazole, Benzimidazole Containing Phthalimide Derivatives. Bioorg. Med. Chem. Lett. 2013, 23, 287–290. DOI: 10.1016/j.bmcl.2012.10.106.
  • Akgün, H.; Karamelekoğlu, İ.; Berk, B.; Kurnaz, I.; Sarıbıyık, G.; Öktem, S.; Kocagöz, T. Synthesis and Antimycobacterial Activity of Some Phthalimide Derivatives. Bioorg. Med. Chem. 2012, 20, 4149–4154. DOI: 10.1016/j.bmc.2012.04.060.
  • Rani, A.; Viljoen, A.; Kremer, L.; Kumar, V. Microwave-Assisted Highly Efficient Route to 4-Aminoquinoline-Phthalimide Conjugates: Synthesis and Anti-Tubercular Evaluation. ChemistrySelect. 2017, 2, 10782–10785. DOI: 10.1002/slct.201702220.
  • Santos, J. L.; Yamasaki, P. R.; Chin, C. M.; Takashi, C. H.; Pavan, F. R.; Leite, C. Q. Synthesis and in Vitro anti Mycobacterium tuberculosis Activity of a Series of Phthalimide Derivatives. Bioorg. Med. Chem. 2009, 17, 3795–3799. DOI: 10.1016/j.bmc.2009.04.042.
  • Kushwaha, N.; Tripathi, A.; Kushwaha, S. K. S. Synthesis, Characterization and in Vitro anti Mycobacterium tuberculosis Evaluation of Some Novel Phthalimide Derivatives. Der Pharma Chemica. 2014, 6, 188–196.
  • Ashok, D.; Chiranjeevi, P.; Kumar, A. V.; Sarasija, M.; Krishna, V. S.; Sriram, D.; Balasubramanian, S. 1,2,3-Triazole-Fused Spirochromenes as Potential anti-Tubercular Agents: Synthesis and Biological Evaluation. RSC Adv. 2018, 8, 16997. DOI: 10.1039/C8RA03197E.
  • Gao, F.; Yang, H.; Lu, T.; Chen, Z.; Ma, L.; Xu, Z.; Schaffer, P.; Lu, G. Design, Synthesis and Anti-Mycobacterial Activity Evaluation of Benzofuran-Isatin Hybrids. Eur. J. Med. Chem. 2018, 159, 277–281. DOI: 10.1016/j.ejmech.2018.09.049.
  • Naik, R. J.; Kulkarni, M. V.; Pai, K. S. R.; Nayak, P. G. Click Chemistry Approach for Bis‐Chromenyl Triazole Hybrids and Their Antitubercular Activity. Chem. Biol. Drug Des. 2012, 80, 516–523. DOI: 10.1111/j.1747-0285.2012.01441.x.
  • Shaikh, M. H.; Subhedar, D. D.; Khan, F. A. K.; Sangshetti, J. N.; Nawale, L.; Arkile, M.; Sarkar, D.; Shingate, B. B. Synthesis of Novel Triazole‐Incorporated Isatin Derivatives as Antifungal, Antitubercular, and Antioxidant Agents and Molecular Docking Study. J. Heterocyclic Chem. 2017, 54, 413–421. DOI: 10.1002/jhet.2598.
  • Sajja, Y.; Vanguru, S.; Vulupala, H. R.; Bantu, R.; Yogeswari, P.; Sriram, D.; Nagarapu, L. Design, Synthesis and in Vitro Anti-Tuberculosis Activity of Benzo [6,7]Cyclohepta[1,2-b]Pyridine-1,2,3-Triazole Derivatives. Bioorg. Med. Chem. Lett. 2017, 27, 5119–5121. DOI: 10.1016/j.bmcl.2017.10.071.
  • Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. A Stepwise Huisgen Cycloaddition Process: Copper(I)‐Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes. Angew. Chem. 2002, 114, 2708. DOI: 10.1002/1521-3757(20020715)114:14<2708::AID-ANGE2708>3.0.CO;2-0.
  • Kushwaha, K.; Kaushik, N. L.; Jain, S. C. Design and Synthesis of Novel 2H-Chromen-2-One Derivatives Bearing 1,2,3-Triazole Moiety as Lead Antimicrobials. Bioorg. Med. Chem. Lett. 2014, 24, 1795–1801. DOI: 10.1016/j.bmcl.2014.02.027.
  • Gonzalez-Olvera, R.; Espinoza-Vázquez, A.; Negrón-Silva, G.; Palomar-Pardavé, M.; Romero-Romo, M.; Santillan, R. Multicomponent Click Synthesis of New 1,2,3-Triazole Derivatives of Pyrimidine Nucleobases: Promising Acidic Corrosion Inhibitors for Steel. Molecules. 2013, 18, 15064–15079. DOI: 10.3390/molecules181215064.
  • Li, L. T.; Zhou, L. F.; Li, Y. J.; Huang, J.; Liu, R. H.; Wang, B.; Wang, P. Facile Synthesis of 1,2,3-Triazole Analogs of SGLT2 Inhibitors by ‘Click Chemistry. Bioorg. Med. Chem. Lett. 2012, 22, 642–644. DOI: 10.1016/j.bmcl.2011.10.062.
  • Sun, Q.; Yao, Y.; Liu, C.; Li, H.; Yao, H.; Xue, X.; Liu, J.; Tu, Z.; Jiang, S. Design, Synthesis, and Biological Evaluation of Novel Histone Deacetylase 1 Inhibitors through Click Chemistry. Bioorg. Med. Chem. Lett. 2013, 23, 3295–3299. DOI: 10.1016/j.bmcl.2013.03.102.
  • Wang, G.; Peng, Z.; Wang, J.; Li, J.; Li, X. Synthesis and Biological Evaluation of Novel 2,4,5-Triarylimidazole-1,2,3-Triazole Derivatives via Click Chemistry as α-Glucosidase Inhibitors. Bioorg. Med. Chem. Lett. 2016, 26, 5719–5723. DOI: 10.1016/j.bmcl.2016.10.057.
  • Anand, A.; Kulkarni, M. V.; Joshi, S. D.; Dixit, S. R. One Pot Click Chemistry: A Three Component Reaction for the Synthesis of 2-Mercaptobenzimidazole Linked Coumarinyl Triazoles as anti-Tubercular Agents. Bioorg. Med. Chem. Lett. 2016, 26, 4709–4713. DOI: 10.1016/j.bmcl.2016.08.045.
  • da Silva, M. T.; de Oliveira, R. N.; Valença, W. O.; Barbosa, F. C. G.; da Silva, M. G.; Camara, C. A. Synthesis of N-Substituted Phthalimidoalkyl 1H-1,2,3-Triazoles: A Molecular Diversity Combining Click Chemistry and Ultrasound Irradiation. J. Braz. Chem. Soc. 2012, 23, 1839–1843. DOI: 10.1590/S0103-50532012005000053.
  • da Silva, G. B.; Guimaraes, B. M.; Assis, S. P. O.; Lima, V. L. M.; de Oliveira, R. N. Ultrasound-Assisted Synthesis of 1-N-β-D-Glucopyranosyl-1H-1,2,3-Triazole Benzoheterocycles and Their Anti-Inflammatory Activities. J. Braz. Chem. Soc. 2013, 24, 914–921. DOI: 10.5935/0103-5053.20130117.
  • Lopez-Gonzalez, R.; Bautista-Renedo, J.; Martinez-Otero, D.; Reyes, H.; González-Rivas, N.; Cuevas-Yanez, E. 1,4- and 1,5-di(N-Phthalimidomethyl)-1,2,3-Triazoles: crystal Structures and Density Functional Theory Studies of the Alkyne and Azide Precursors. J. Chem. Res. 2016, 40, 308–313. DOI: 10.3184/174751916X14608096414015.
  • Collins, L. A.; Franzblau, S. G. Microplate Alamar Blue Assay versus BACTEC 460 System for High-Throughput Screening of Compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob. Agents Chemother. 1997, 41, 1004–1009. DOI: 10.1128/AAC.41.5.1004.
  • Gjorgjieva, M.; Tomasic, T.; Barancokova, M.; Katsamakas, S.; Ilas, J.; Tammela, P.; Peterlin Masic, L.; Kikelj, D. Discovery of Benzothiazole Scaffold-Based DNA Gyrase B Inhibitors. J. Med. Chem. 2016, 59, 8941–8954. DOI: 10.1021/acs.jmedchem.6b00864.
  • Kamat, S. R.; Salunkhe, R. S.; Choudhari, P. B.; Dhavale, R. P.; Mane, A. H.; Lohar, T. R. Efficient Synthesis of Chromeno[2,3-c]Pyrazolyl-Pyrazolol in Hydrotropic Solution and Their anti-Infective Potential. Res. Chem. Intermed. 2018, 44, 1351–1362. DOI: 10.1007/s11164-017-3171-5.
  • Abhale, Y. K.; Shinde, A. D.; Deshmukh, K. K.; Nawale, L.; Sarkar, D.; Choudhari, P. B.; Kumbhar, S. S.; Mhaske, P. C. Synthesis, Antimycobacterial Screening and Molecular Docking Studies of 4-Aryl-4′-Methyl-2′-Aryl-2,5′-Bisthiazole Derivatives. Med. Chem. Res. 2017, 26, 2889–2899. DOI: 10.1007/s00044-017-1988-5.
  • Kondhare, D. D.; Gyananath, G.; Tamboli, Y.; Kumbhar, S. S.; Choudhari, P. B.; Bhatia, M. S.; Zubaidha, P. K. An Efficient Synthesis of Flavanones and Their Docking Studies with Aldose Reductase. Med. Chem. Res. 2017, 26, 987–998. DOI: 10.1007/s00044-017-1813-1.
  • Deodware, S. A.; Sathe, D. J.; Choudhari, P. B.; Lokhande, T. N.; Gaikwad, S. H. Development and Molecular Modeling of Co(II), Ni(II) and Cu(II) Complexes as High Acting Antibreast Cancer Agents. Arab. J. Chem. 2017, 10, 262–272. DOI: 10.1016/j.arabjc.2016.09.024.
  • Daina, A.; Michielin, O.; Zoete, V. Swiss ADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. DOI: 10.1038/srep42717.
  • Daina, A.; Michielin, O.; Zoete, V. iLOGP: A Simple, Robust, and Efficient Description of n-Octanol/Water Partition Coefficient for Drug Design Using the GB/SA Approach. J. Chem. Inf. Model. 2014, 54, 3284–3301. DOI: 10.1021/ci500467k.
  • Daina, A.; Michielin, O.; Zoete, V. A Boiled‐Egg to Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. Chem. Med. Chem. 2016, 11, 1117–1121.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.