Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 49, 2019 - Issue 16
460
Views
6
CrossRef citations to date
0
Altmetric
Articles

Metal-free cross-dehydrogenative C–N coupling of azoles with xanthenes and related activated arylmethylenes

, , , , , & ORCID Icon show all
Pages 2053-2065 | Received 14 Jan 2019, Published online: 20 May 2019

References

  • For recent reviews, see: (a) Marcantoni, E.; Petrini, M. Recent Developments in the Stereoselective Synthesis of Nitrogen-Containing Heterocycles using N-Acylimines as Reactive Substrates. Adv. Synth. Catal. 2016, 358, 3657–3682. DOI: 10.1002/adsc.201600644. (b) Tanoury, G. J. Photochemical Synthesis of Azaheterocycles. Synthesis 2016, 48, 2009–2025. DOI: 10.1055/s-0035-1560440. For a recent example: (c) Zhu, W.; Bao, W.; Ying, W.; Chen, W.; Huang, Y.; Ge, G.; Chen, G.; Wei, W. TEMPO-Promoted C(sp3)–H Hydroxylation of 2-Oxindoles at Room Temperature. Asian J. Org. Chem. 2018, 7, 337–340. DOI: 10.1002/ajoc.201700660.
  • For recent reviews, see: (a) Luo, J.; Wei, W. Recent Advances in the Construction of C–N Bonds Through Coupling Reactions Between Carbon Radicals and Nitrogen Radicals.Adv. Synth. Catal. 2018, 360, 2076–2086. DOI: 10.1002/adsc.201800205. (b) Wei, W.; Zhu, W.; Wu, Y.; Huang, Y.; Liang, H. Progress in C–N Bonds Formation Using t-BuONO. Chin. J. Org. Chem. 2017, 37, 1916–1923. DOI: 10.6023/cjoc201703039. (c) Xiong, T.; Zhang, Q. New Amination Strategies Based on Nitrogen-centered Radical Chemistry. Chem. Soc. Rev. 2016, 45, 3069–3087. DOI: 10.1039/c5cs00852b. For recent examples: (d) Wei, W.; Zhu, W.; Bao, W.; Che, W.; Huang, Y.; Gao, L.; Xu, X.; Wang, Y.; Chen, G. Metal-Free C(sp3)−H Amination of 2 Oxindoles in Water: Facile Synthesis of 3 Substituted 3-Aminooxindoles. ACS Sustainable Chem. Eng. 2018, 6, 5615–5619. DOI: 10.1021/acssuschemeng.8b00641. (e) Wei, W.; Zhu, W.; Liang, W.; Wu, Y.; Huang, H.; Huang, Y.; Luo, J.; Liang, H. Room-Temperature, Water-Promoted, Radical-Coupling Reactions of Phenols with tert-Butyl Nitrite. Synlett 2017, 28, 2153–2158. DOI: 10.1055/s-0036-1589038.
  • For reviews on electrochemical/photochemical aminations, see: (a) Zhang, H.; Lei, A. Electrochemical/Photochemical Aminations Based on Oxidative Cross-Coupling between C–H and N–H. Synthesis 2019, 51, 83–96. DOI: 10.1055/s-0037-1610380. (b) Zhao, Y.; Xia, W. Recent Advances in Radical-based C–N Bond Formation via Photo-/electrochemistry. Chem. Soc. Rev. 2018, 47, 2591–2608. DOI: 10.1039/c7cs00572e.
  • For recent reviews on transition metal-catalyzed C−H amination, see: (a) Timsina, Y. N.; Gupton, B. F.; Ellis, K. C. Palladium-Catalyzed C−H Amination of C(sp2) and C(sp3)−H Bonds: Mechanism and Scope for N-Based Molecule Synthesis. ACS Catal. 2018, 8, 5732–5776. DOI: 10.1021/acscatal.8b01168. (b) Park, Y.; Kim, Y.; Chang, S. Transition Metal-Catalyzed C−H Amination: Scope, Mechanism, and Applications. Chem. Rev. 2017, 117, 9247–9301. DOI: 10.1021/acs.chemrev.6b00644.
  • Bryan, M. C.; Dunn, P. J.; Entwistle, D.; Gallou, F.; Koenig, S. G.; Hayler, J. D.; Hickey, M. R.; Hughes, S.; Kopach, M. E.; Moine, G.; et al. Key Green Chemistry Research Areas from a Pharmaceutical Manufacturers' Perspective Revisited. Green Chem. 2018, 20, 5082–5103. DOI: 10.1039/C8GC01276H.
  • For recent examples, see: (a) Watterson, K. R.; Hansen, S. V. F.; Hudson, B. D.; Alvarez-Curto, E.; Raihan, S. Z.; Azevedo, C. M. G.; Martin, G.; Dunlop, J.; Yarwood, S. J.; Ulven, T.; Milligan, G. Probe-Dependent Negative Allosteric Modulators of the Long-Chain Free Fatty Acid Receptor FFA4, Mol. Pharmacol. 2017, 91, 630–641. DOI: 10.1124/mol.116.107821. (b) Fujiwara, T.; Ohira, K.; Urushibara, K.; Ito, A.; Yoshida, M.; Kanai, M.; Tanatani, A.; Kagechika, H.; Hirano, T. Steric Structure–Activity Relationship of Cyproheptadine Derivatives as Inhibitors of Histone Methyltransferase Set7/9. Bioorg. Med. Chem. 2016, 24, 4318–4323. DOI: 10.1016/j.bmc.2016.07.024.
  • (a) Liu, C.; Wang, T.; Qi, Q.; Tian, S. Ferric Chloride-Catalyzed C–N Bond Cleavage for the Cyclization of Arylallenes Leading to Polysubstituted Indenes. Chem. Commun. 2012, 48, 10913–10915. DOI: 10.1039/c2cc36048a. (b) Yang, C.; Wang, J.; Tian, S. Catalytic Decarboxylative Alkylation of β-Keto Acids with Sulfonamides via the Cleavage of Carbon–Nitrogen and Carbon–Carbon Bonds. Chem. Commun. 2011, 47, 8343–8345. DOI: 10.1039/c1cc12790j.
  • (a) Long, J. Z.; Jin, X.; Adibekian, A.; Li, W.; Cravatt, B. F. Characterization of Tunable Piperidine and Piperazine Carbamates as Inhibitors of Endocannabinoid Hydrolases. J. Med. Chem. 2010, 53, 1830–1842. DOI: 10.1021/jm9016976. (b) García, A.; Domínguez, D. [1]Benzopyrano[2,3,4-i,j]isoquinolines: A New, Versatile Route from 1-Bromoxanthones. Tetrahedron Lett. 2001, 42, 5219–5221. DOI: 10.1016/S0040-4039(01)00983-2.
  • (a) Combee, L. A.; Raya, B.; Wang, D.; Hilinski, M. K. Organocatalytic Nitrenoid Transfer: Metal-Free Selective Intermolecular C(sp3)–H Amination Catalyzed by an Iminium Salt. Chem. Sci. 2018, 9, 935–939. DOI: 10.1039/c7sc03968a. (b) Fujita, D.; Sugimoto, H.; Morimoto, Y.; Itoh, S. Noninnocent Ligand in Rhodium(III)-Complex-Catalyzed C−H Bond Amination with Tosyl Azide. Inorg. Chem. 2018, 57, 9738–9747. DOI: 10.1021/acs.inorgchem.8b00289.
  • (a) Scheuermann, C. J. Beyond Traditional Cross Couplings: The Scope of the Cross Dehydrogenative Coupling Reaction. Chem. Asian J. 2010, 5, 436–451. DOI: 10.1002/asia.200900487. (b) Li, C. Cross-Dehydrogenative Coupling (CDC): Exploring C − C Bond Formations beyond Functional Group Transformations. Acc. Chem. Res. 2009, 42, 335–344. DOI: 10.1021/ar800164n.
  • Lin, M.; Xu, K.; Jiang, Y.; Liu, Y.; Sun, B.; Zeng, C. Intermolecular Electrochemical C(sp3)–H/N–H Cross-Coupling of Xanthenes with N-Alkoxyamides: Radical Pathway Mediated by Ferrocene as a Redox Catalyst. Adv. Synth. Catal. 2018, 360, 1665–1672. DOI: 10.1002/adsc.201701536.
  • (a) Li, Y.; Yang, R.; Zhao, X.; Yao, Y.; Yang, S.; Wu, Q.; Liang, D. Copper-Catalyzed Cyanoisopropylation of beta-Keto Esters Using Azos: Synthesis of beta-Dicarbonyls Bearing an alfa-Tertiary Nitrile Moiety. Synth. Commun. 2019, 46, 735–743. DOI: 10.1080/00397911.2019.1574350. (b) Li, Y.; Chang, Y.; Li, Y.; Cao, C.; Yang, J.; Wang, B.; Liang, D. Iron-Catalyzed exo-Selective Synthesis of Cyanoalkyl Indolines via Cyanoisopropylarylation of Unactivated Alkenes. Adv. Synth. Catal. 2018, 360, 2488–2492. DOI: 10.1002/adsc.201800296. (c) Liang, D.; Dong, Q.; Xu, P.; Dong, Y.; Li, W.; Ma, Y. Synthesis of CF3CH2 Containing Indolines by Transition-Metal-Free Aryltrifluoromethylation of Unactivated Alkenes. J. Org. Chem. 2018, 83, 11978–11986. DOI: 10.1021/acs.joc.8b01861. (d) Liang, D.; Ge, D.; Lv, Y.; Huang, W.; Wang, B.; Li, W. Silver-Catalyzed Radical Arylphosphorylation of Unactivated Alkenes: Synthesis of 3 Phosphonoalkyl Indolines. J. Org. Chem. 2018, 83, 4681–4691. DOI: 10.1021/acs.joc.8b00450. (e) Liang, D.; Li, Y.; Gao, S.; Li, R.; Li, X.; Wang, B.; Yang, H. Amide-Assisted Radical Strategy: Metal-Free Direct Fluorination of Arenes in Aqueous Media. Green Chem. 2017, 19, 3344–3349. DOI: 10.1039/c7gc00356k. (f) Liang, D.; Li, X.; Lan, Q.; Huang, W.; Yuan, L.; Ma, Y. Tin Tetrachloride Pentahydrate-Catalyzed Regioselective Chlorohydroxylation of α,β-Unsaturated Ketones in Water with Selectfluor as a Chlorine Source. Tetrahedron Lett. 2016, 57, 2207–2210. DOI: 10.1016/j.tetlet.2016.04.028.
  • (a) Li, Y.; Liang, D.; Chang, Y.; Li, X.; Fu, S.; Yuan, Y.; Wang, B. Metal-Free and Selective Cleavage of Unstrained Carbon–Carbon Single Bonds: Synthesis of β-Ketosulfones from β-Chlorohydrins and Sodium Sulfinates. Synth. Commun. 2017, 47, 2044–2052. DOI: 10.1080/00397911.2017.1362439. (b) Li, Y.; Liang, D.; Li, X.; Huang, W.; Yuan, L.; Wang, B.; Cheng, P. Br2- or HBr-Catalyzed Synthesis of Asymmetric 3,3-Di(indolyl)indolin-2-ones. Heterocycl. Commun. 2017, 23, 29–34. DOI: 10.1515/hc-2016-0071. (c) Liang, D.; Li, X.; Wang, C.; Dong, Q.; Wang, B.; Wang, H. Regioselective and Efficient Bromination of Anilides on Water Using HBr and Selectfluor. Tetrahedron Lett. 2016, 57, 5390–5394. DOI: 10.1016/j.tetlet.2016.10.092. (d) Liang, D.; Li, X.; Zhang, W.; Li, Y.; Zhang, M.; Cheng, P. Br2 as a Novel Lewis Acid Catalyst for Friedel–Crafts Alkylation of Indoles with α,β-Unsaturated Ketones. Tetrahedron Lett. 2016, 57, 1027–1030. DOI: 10.1016/j.tetlet.2016.01.078. (e) Liang, D.; Li, X.; Li, Y.; Yang, Y.; Gao, S.; Cheng, P. Br2-Catalyzed Regioselective Dehydrative Coupling of Indoles with Acyloins: Direct Synthesis of α-(3-indolyl) Ketones. RSC Adv. 2016, 6, 29020–29025. DOI: 10.1039/c6ra03321k.
  • For recent examples, see: (a) Pankhurst, J. R.; Curcio, M.; Sproules, S.; Lloyd-Jones, G. C.; Love, J. B. Earth-Abundant Mixed-Metal Catalysts for Hydrocarbon Oxygenation. Inorg. Chem. 2018, 57, 5915–5928. DOI: 10.1021/acs.inorgchem.8b00420. (b) Xiang, M.; Xin, Z.; Chen, B.; Tung, C.; Wu, L. Exploring the Reducing Ability of Organic Dye (Acr+ Mes) for Fluorination and Oxidation of Benzylic C(sp3)−H Bonds under Visible Light Irradiation. Org. Lett. 2017, 19, 3009–3012. DOI: 10.1021/acs.orglett.7b01270. (c) Hossain, M. M.; Shyu, S. Biphasic Copper-Catalyzed C–H Bond Activation of Arylalkanes to Ketones with tert-Butyl Hydroperoxide in Water at Room Temperature. Tetrahedron 2016, 72, 4252–4257. DOI: 10.1016/j.tet.2016.05.066. (d) Yang, Y.; Ma, H. Room-Temperature Direct Benzylic Oxidation Catalyzed by Cobalt(II) Perchlorate. Tetrahedron Lett. 2016, 57, 5278–5280. DOI: 10.1016/j.tetlet.2016.10.049.
  • (a) Zhang, Z.; Gao, Y.; Liu, Y.; Li, J.; Xie, H.; Li, H.; Wang, W. Organocatalytic Aerobic Oxidation of Benzylic sp3 C−H Bonds of Ethers and Alkylarenes Promoted by a Recyclable TEMPO Catalyst. Org. Lett. 2015, 17, 5492–5495. DOI: 10.1021/acs.orglett.5b02877. (b) Nguyen, T. D.; Wright, A. M.; Page, J. S.; Wu, G.; Hayton, T. W. Oxidation of Alcohols and Activated Alkanes with Lewis Acid-Activated TEMPO. Inorg. Chem. 2014, 53, 11377–11387. DOI: 10.1021/ic5018888. (c) Zhang, B.; Cui, Y.; Jiao, N. Metal-free TEMPO-Catalyzed Oxidative C–C Bond Formation from Csp3–H Bonds Using Molecular Oxygen as the Oxidant. Chem. Commun. 2012, 48, 4498–4500. DOI: 10.1039/c2cc30684k.
  • (a) Miao, C.; Zhao, H.; Zhao, Q.; Xia, C.; Sun, W. NHPI and Ferric Nitrate: A Mild and Selective System for Aerobic Oxidation of Benzylic Methylenes. Catal. Sci. Technol. 2016, 6, 1378–1383. DOI: 10.1039/c5cy01245g. (b) Majumdar, B.; Bhattacharya, T.; Sarma, T. K. Gold Nanoparticle–Polydopamine–Reduced Graphene Oxide Ternary Nanocomposite as an Efficient Catalyst for Selective Oxidation of Benzylic C(sp3)–H Bonds Under Mild Conditions. ChemCatChem 2016, 8, 1825–1835. DOI: 10.1002/cctc.201600136.
  • Stopka, T.; Marzo, L.; Zurro, M.; Janich, S.; Würthwein, E.; Daniliuc, C. G.; Alemán, J.; Mancheño, O. G. Oxidative C–H Bond Functionalization and Ring Expansion with TMSCHN2: A Copper(I)-Catalyzed Approach to Dibenzoxepines and Dibenzoazepines. Angew. Chem. Int. Ed. 2015, 54, 5049–5053. DOI: 10.1002/anie.201411726.
  • (a) Wu, H.; Su, C.; Tandiana, R.; Liu, C.; Qiu, C.; Bao, Y.; Wu, J.; Xu, Y.; Lu, J.; Fan, D.; Loh, K. P. Graphene-Oxide-Catalyzed Direct CH–CH-Type Cross-Coupling: The Intrinsic Catalytic Activities of Zigzag Edges. Angew. Chem. Int. Ed. 2018, 57, 10848–10853. DOI: 10.1002/anie.201802548. (b) Schweitzer-Chaput, B.; Sud, A.; Pintér, Á.; Dehn, S.; Schulze, P.; Klussmann, M. Synergistic Effect of Ketone and Hydroperoxide in Brønsted Acid Catalyzed Oxidative Coupling Reactions. Angew. Chem. Int. Ed. 2013, 52, 13228–13232. DOI: 10.1002/anie.201306752. (c) Pintér, Á.; Klussmann, M. Sulfonic Acid-Catalyzed Autoxidative Carbon-Carbon Coupling Reaction Under Elevated Partial Pressure of Oxygen. Adv. Synth. Catal. 2012, 354, 701–711. DOI: 10.1002/adsc.201100563. (d) Pintér, Á.; Sud, A.; Sureshkumar, D.; Klussmann, M. Autoxidative Carbon–Carbon Bond Formation from Carbon–Hydrogen Bonds. Angew. Chem. Int. Ed. 2010, 49, 5004–5007. DOI: 10.1002/anie.201000711.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.