Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 49, 2019 - Issue 16
887
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

An overview on the synthesis and chemical properties ofp-aminoacetanilide and its derivatives

, , , &
Pages 1957-1986 | Received 19 Apr 2019, Published online: 20 May 2019

References

  • Patel, R. V.; Kumari, P.; Rajani, D. P.; Chikhalia, K. H. Synthesis of Coumarin-Based 1,3,4-Oxadiazol-2ylthio-N-Phenyl/Benzothiazolyl Acetamides as Antimicrobial and Antituberculosis Agents. Med. Chem. Res. 2013, 22, 195–210. DOI: 10.1007/s00044-012-0026-x.
  • Paramonova, M. P.; Khandazhinskaya, A. L.; Seley-Radtke, K. L.; Novikov, M. S.; Novel, 1. [5-(4-bromophenoxy)Pentyl]-3-(2-Aryl-Amino-2-Oxoethyl)Uracils and Their Antiviral Properties. Mendeleev Commun. 2017, 27, 85–87. DOI: 10.1016/j.mencom.2017.01.027.
  • Wollweber, H.; Kölling, H.; Niemers, E.; Widdig, A.; Andrews, P.; Schulz, H. P.; Thomas, H. Thomas H. 2-(Guanidino)-Anilides and Related Compounds. Synthesis and Anthelmintic Effect. 3. Anthelmintics. Arzneimittelforschung 1984, 34, 531–542.
  • Helal, M. H.; El-Awdan, S. A.; Salem, M. A.; Abd-Elaziz, T. A.; Moahamed, Y. A.; El-Sherif, A. A.; Mohamed, G. A. M. Synthesis, Biological Evaluation and Molecular Modeling of Novel Series of Pyridine Derivatives as Anticancer, Anti-Inflammatory and Analgesic Agents. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 135, 764–773. DOI: 10.1016/j.saa.2014.06.145.
  • Ozkay, D. U.; Ozkay, Y.; Can, O. D. Synthesis and Analgesic Effects of 2-(2-Carboxyphenylsulfanyl)-N-(4-Substitutedphenyl)-Acetamide Derivatives. Med. Chem. Res. 2011, 20, 152–157. DOI: 10.1007/s00044-010-9300-y.
  • Kaldrikyan, M. A.; Grigoryan, L. A.; Melik-Ogandzhanyan, R. G.; Arsenyan, F. G. Synthesis and Antitumor Activity of Some Benzofuryl-Substituted 1,2,4-Triazoles. Pharm. Chem. J. 2009, 43, 242–244. DOI: 10.1007/s11094-009-0287-y.
  • Patel, A. B.; Patel, R. V.; Kumari, P.; Rajani, D. P.; Chikhalia, K. H. Synthesis of Potential Antitubercular and Antimicrobial s-Triazine-Based Scaffolds via Suzuki Cross-Coupling Reaction. Med. Chem. Res. 2013, 22, 367–381. DOI: 10.1007/s00044-012-0041-y.
  • Yazdanbakhsh, M. R.; Yousefi, H.; Mamaghani, M.; Moradi, E. O.; Rassa, M.; Pouramir, H.; Bagheri, M. Synthesis, Spectral Characterization and Antimicrobial Activity of Some New Azo Dyes Derived from 4,6-Dihydroxypyrimidine. J. Mol. Liq. 2012, 169, 21–26. DOI: 10.1016/j.molliq.2012.03.003.
  • Patel, N. C.; Mehta, A. G. Synthesis and Application of Some Bisazo Acid Dyes Based on 4-Hydroxy Quinoline Quinazoline System on Various Fabrics. Asian. J. Chem. 2001, 13, 1380–1384.
  • Seferoğlu, Z.; Ertan, N. Synthesis, Characterization and Spectroscopic Properties of Some New Phenylazo-6-Aminouracil. Cent. Eur. J. Chem. 2008, 6, 81–88. DOI: 10.2478/s11532-007-0062-4.
  • Das, S.; Murugadoss, A.; Sarkar, S.; Chattopadhyay, A. p-Aminoacetanilide Mediated Formation of Assembly of Au Nanoparticles. J. Chem. Sci. 2008, 120, 547–555. DOI: 10.1007/s12039-008-0084-2.
  • Pokhodylo, N. T.; Matiichuk, V. S.; Obushak, N. D. Synthesis and Transformations of 1-(Azidophenyl)-1H-Tetrazoles. Russ. J. Org. Chem. 2010, 46, 556–560. DOI: 10.1134/S1070428010040196.
  • Gaidhane, M. K.; Ghatole, A. M.; Lanjewar, K. R. Novel Synthesis and Antimicrobial Activity of Novel Schiff Base Derived Quinolin and Their β-Lactam Derivatives. Int. J. Pharm. Pharm. Sci. 2013, 5, 421–426.
  • Farhadi, S.; Siadatnasab, F.; Kazem, M. Microwave-Assisted Rapid and Efficient Reduction of Aromatic Nitro Compounds to Amines with Propan-2-ol over Nanosized Perovskite-Type SmFeO3 Powder as a New Recyclable Heterogeneous Catalyst. J. Chem. Res. 2011, 35, 104–108. DOI: 10.1002/chin.201127049.
  • Sović, I.; Pavelić, S. K.; Markova-Car, E.; Ilić, N.; Nhili, R.; Depauw, S.; David-Cordonnier, M.-H.; Karminski-Zamola, G. Novel Phenyl and Pyridyl Substituted Derivatives of Isoindolines: Synthesis, Antitumor Activity and DNA Binding Features. Eur. J. Med. Chem. 2014, 87, 372–385. DOI: 10.1016/j.ejmech.2014.09.079.
  • Suh, J.; Yum, E. K.; Cheon, H. G.; Cho, Y. S. Synthesis and Biological Evaluation of N-Aryl-4-Aryl-1,3-Thiazole-2-Amine Derivatives as Direct 5-Lipoxygenase Inhibitors. Chem. Biol. Drug Des. 2012, 80, 90–99.
  • Mistry, B. M.; Patel, R. V.; Keum, Y. S.; Kim, D. H. Chrysin-Benzothiazole Conjugates as Antioxidant and Anticancer Agents. Bioorg. Med. Chem. Lett. 2015, 25, 5561–5565. DOI: 10.1016/j.bmcl.2015.10.052.
  • Bapna, M.; Chauhan, L. S. Microwave Assisted Synthesis and in Silico Molecular Modeling Studies Some New Derivatives of (Z)-N-(4-(4-(Substituted-Benzylidene)-5-Oxo-2-Phenyl-4,5-Dihydro-Imidazol-1-yl)Phenyl)Acetamide as Lead Compounds. Der. Pharma. Chem. 2014, 6, 1–9.
  • Dotsenko, V. V.; Frolov, K. A.; Krivokolysko, S. G. Mannich Reaction in the Synthesis of N,S-Containing Heterocycles. 13*. One-Pot Method for Preparing Pyrimido[4,3-b]-[1,3,5]Thiadiazines by Reaction of Aldehydes, Cyanothioacetamide, Formaldehyde, and Primary Amines. Chem. Heterocycl. Comp. 2012, 48, 642–649. DOI: 10.1007/s10593-012-1038-7.
  • Saudi, M. N. S.; El-Semary, M. M. A.; Elbayaa, R. Y.; Jaeda, M. I.; Eissa, M. M.; Amer, E. I.; Baddour, N. M. Synthesis and Biological Evaluation of a Novel Class as Antileishmanial Agent. Med. Chem. Res. 2012, 21, 257–267. DOI: 10.1007/s00044-010-9532-x.
  • Hebenbrock, K.-F. Herstellung Und Reaktionen Von l-Aryl-3-Hydroxy-3-Methyl-2,5-Pyrrolidindionen. Justus Liebigs Ann. Chem. 1978, 2, 320–336. DOI: 10.1002/jlac.197819780213.
  • Turlington, M.; Chun, A.; Tomar, S.; Eggler, A.; Grum-Tokars, V.; Jacobs, J.; Daniels, J. S.; Dawson, E.; Saldanha, A.; Chase, P.; et al. Discovery of N-(Benzo[1,2,3]Triazol-1-yl)-N-(Benzyl)Acetamido)-Phenyl) Carboxamides as Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) 3CLpro Inhibitors: Identification of ML300 and Noncovalent Nanomolar Inhibitors with an Induced-Fit Binding. Bioorg. Med. Chem. Lett. 2013, 23, 6172–6177. DOI: 10.1016/j.bmcl.2013.08.112.
  • Mahesh, D.; Sadhu, P.; Punniyamurthy, T. Copper(I)-Catalyzed Regioselective Amination of N-Aryl Imines Using TMSN3 and TBHP: A Route to Substituted Benzimidazoles. J. Org. Chem. 2015, 80, 1644–1650. DOI: 10.1021/jo502574u.
  • Tigineh, G. T.; Wen, Y.-S.; Liu, L.-K. Solvent-Free Mechanochemical Conversion of 3-Ethoxysalicylaldehyde and Primary Aromatic Amines to Corresponding Schiff-Bases. Tetrahedron 2015, 71, 170–175. DOI: 10.1016/j.tet.2014.10.074.
  • Zarghi, A.; Reihanfard, H.; Arfaei, S.; Daraei, B.; Hedayati, M. Design and Synthesis of New 1,2-Diaryl-4,5,6,7-Tetrahydro-1H-Benzo[d]Imidazoles as Selective Cyclooxygenase (COX-2) Inhibitors. Med. Chem. Res. 2012, 21, 1869–1875. DOI: 10.1007/s00044-011-9709-y.
  • Wu, Y.; Zhao, B.; Baolong, L. N-[4-(4-Nitrobenzylideneamino)-Phenyl]-Acetamide. Acta Crystallogr. E Struct. Rep. Online 2006, E62, o5677–o5678. DOI: 10.1107/S1600536806048173.
  • Hooker, J. M.; Esser-Kahn, A. P.; Francis, M. B. Modification of Aniline Containing Proteins Using an Oxidative Coupling Strategy. J. Am. Chem. Soc. 2006, 128, 15558–15559. DOI: 10.1021/ja064088d.
  • Jamshidi, M.; Nematollahi, D.; Rudbari, H. A. Electrochemical Oxidation of p -Aminoacetanilide in Aqueous Solutions: A Green Electrochemical Protocol for the Synthesis of Azo Dyes. J. Electrochem. Soc. 2016, 163, G145–G152. DOI: 10.1149/2.0781610jes.
  • Santos, C. M. G.; McCabe, T.; Watson, G. W.; Kruger, P. E.; Gunnlaugsson, T. The Recognition and Sensing of Anions through “Positive Allosteric Effects” Using Simple Urea – Amide Receptors. J. Org. Chem. 2008, 73, 9235–9244. DOI: 10.1021/jo8014424.
  • Deka, D. C.; Kakati, H. S. Selective Reduction of Aromatic Nitro Groups in the Presence of Amide Functionality. J. Chem. Res. 2006, 37, 223–234.
  • Couturier, M.; Tucker, J. L.; Andresen, B. M.; Dubé, P.; Brenek, S. J.; Negri, J. T. Palladium Catalyzed Activation of Borane–Amine Adducts: rate Enhancement of Amine–Borane Methanolysis in the Reduction of Nitrobenzenes to Anilines. Tetrahedron Lett. 2001, 42, 2285–2288. DOI: 10.1016/S0040-4039(01)00166-6.
  • Srinivasa, G. R.; Abiraj, K.; Gowda, D. C. Polymer-Supported Formate and Zinc: A Novel System for the Transfer Hydrogenation of Aromatic Nitro Compounds. Indian. J. Chem. 2006, 45, 297–301.
  • Abiraj, K.; Srinivasa, G. R.; Gowda, D. C. Transfer Hydrogenation of Aromatic Nitro Compounds Using Polymer-Supported Formate and Pd. C. Synth. Commun. 2005, 35, 223–230. DOI: 10.1081/SCC-200048429.
  • Shil, A. K.; Sharma, D.; Guha, N. R.; Das, P. Solid Supported Pd(0): An Efficient Recyclable Heterogeneous Catalyst for Chemoselective Reduction of Nitroarenes. Tetrahedron Lett. 2012, 53, 4858–4861. DOI: 10.1016/j.tetlet.2012.06.132.
  • Abiraj, K.; Srinivasa, G. R.; Gowda, D. C. Simple and Efficient Reduction of Aromatic Nitro Compounds Using Recyclable Polymer-Supported Formate and Magnesium. Aust. J. Chem. 2005, 58, 149–151. DOI: 10.1071/CH04220.
  • Gowda, S.; Gowda, D. C. Application of Hydrazinium Monoformate as New Hydrogen Donor with Raney Nickel: A Facile Reduction of Nitro and Nitrile Moieties. Tetrahedron 2002, 58, 2211–2213. DOI: 10.1016/S0040-4020(02)00093-5.
  • Gowda, S.; Gowda, B. K.; Gowda, D. C. Hydrazinium Monoformate: A New Hydrogen Donor. Selective Reduction of Nitrocompounds Catalyzed by Commercial Zinc Dust. Synth. Commun. 2003, 33, 281–289. DOI: 10.1081/SCC-120015713.
  • Cantillo, D.; Moghaddam, M. M.; Kappe, C. O. Hydrazine-Mediated Reduction of Nitro and Azide Functionalities Catalyzed by Highly Active and Reusable Magnetic Iron Oxide Nanocrystals. J. Org. Chem. 2013, 78, 4530–4542. DOI: 10.1002/chin.201334054.
  • Gowda, D. C.; Gowda, A. S.; Baba, R.; Gowda, S. Nickel-Catalysed Formic Acid Reductions: A Selective Method for the Reduction of Nitro Compounds. Synth. Commun. 2000, 30, 2889–2895. DOI: 10.1080/00397910008087439.
  • Gowda, D. C.; Mahesh, B. Catalytic Transfer Hydrogenation of Aromatic Nitro Compounds by Employing Ammonium Formate and 5% Platinum on Carbon. Synth. Commun. 2000, 30, 3639–2644. DOI: 10.1080/00397910008086990.
  • Dzierzbicka, K.; Trzonkowski, P.; Sewerynek, P.; Myśliwski, A. Synthesis and Cytotoxic Activity of Conjugates of Muramyl and Normuramyl Dipeptides with Batracylin Derivatives. J. Med. Chem. 2003, 46, 978–986. DOI: 10.1021/jm021067v.
  • Arya, K.; Dandia, A. Selective Reduction of Nitro Compounds Using CeY Zeolite under Microwaves. J. Korean Chem. Soc 2010, 54, 55–58. DOI: 10.5012/jkcs.2010.54.01.055.
  • Farhadi, S.; Kazem, M.; Siadatnasab, F. NiO Nanoparticles Prepared via Thermal Decomposition of the Bis(Dimethylglyoximato) Nickel(II) Complex: A Novel Reusable Heterogeneous Catalyst for Fast and Efficient Microwave-Assisted Reduction of Nitroarenes with Ethanol. Polyhedron 2011, 30, 606–613. DOI: 10.1016/j.poly.2010.11.037.
  • Solodenko, W.; Wen, H.; Leue, S.; Stuhlmann, F.; Sourkouni-Argirusi, G.; Jas, G.; Schönfeld, H.; Kunz, U.; Kirschning, A. Development of a Continuous-Flow System for Catalysis with Palladium(0) Particles. Eur. J. Org. Chem. 2004, 2004, 3601–3610. DOI: 10.1002/ejoc.200400194.
  • Guma, M. A. Synthesis and Characterization of Acetaminophen (Paracetamol)® from Acetanilide by Diazotization Reaction and Comparing with Crude. J. Univ. Anbar Pure Sci. 2012, 6, 60–65.
  • Wang, D.; Cai, Q.; Ding, K. An Efficient Copper-Catalyzed Amination of Aryl Halides by Aqueous Ammonia. Adv. Synth. Catal. 2009, 351, 1722–1726. DOI: 10.1002/adsc.200900327.
  • Harris, M. C.; Huang, A. X.; Buchwald, S. L. Improved Functional Group Compatibility in the Palladium-Catalyzed Synthesis of Aryl Amines. Org. Lett. 2002, 4, 2885–2888. DOI: 10.1021/ol0262688.
  • Idaka, E.; Ogawa, T.; Horitsu, H.; Yatome, C. Degradative Pathway of p-Aminoazobenzene by Bacillus subtilis. Eur. J. Appl. Microbiol. Biotechnol. 1982, 15, 141–143. DOI: 10.1007/BF00499522.
  • Mulyono, Takenaka, S.; Sasano, Y.; Murakami, S.; Aoki, K. Bacillus cereus Strain 10-L-2 Produces Two Arylamine N-Acetyltransferases That Transform 4-Phenylenediamine into 4-Aminoacetanilide. J. Biosci. Bioeng. 2007, 103, 147–154. DOI: 10.1263/jbb.103.147.
  • Shirini, F.; Shojaei, A.; Abedini, M.; Samavi, L. P4VPy–CuO Nanoparticles as a Novel and Reusable Catalyst: Application at the Protection of Alcohols, Phenols and Amines. J. Iran. Chem. Soc. 2016, 13, 1699–1712. DOI: 10.1007/s13738-016-0887-x.
  • Sayed, A. Z.; Aboul-Fetouh, M. S.; Nassar, H. S. Synthesis, Biological Activity and Dyeing Performance of Some Novel Azo Disperse Dyes Incorporating Pyrazolo[1,5-a]Pyrimidines for Dyeing of Polyester Fabrics. J. Mol. Struct. 2012, 1010, 146–151. DOI: 10.1016/j.molstruc.2011.11.046.
  • Sayed, A. Z.; Aboul-Fetouh, M. S.; Nassar, H. S. Synthesis of Some New Diazo Disperse Dyes and Their Application on Dyeing of Polyester. J. Chem. Chem. Eng. 2011, 5, 150–158.
  • Yousefi, H.; Yahyazadeh, A. Synthesis and Solvatochromism Study of Some New 4-(Benzyloxy)-2-((4-Aryl)Diazenyl)Phenols. Chin. Chem. Lett. 2012, 23, 685–689. DOI: 10.1016/j.cclet.2012.04.015.
  • Tikhomirova, T. V.; Badaukaite, R. A.; Kulinich, V. P.; Shaposhnikov, G. P. Synthesis and Properties of Phthalonitriles with an Azo Chromophore and Related Phthalocyanines. Russ. J. Gen. Chem. 2013, 83, 116–123. DOI: 10.1134/S1070363213010209.
  • Fürst, M. C. D.; Bock, L. R.; Heinrich, M. R. Regioselective Radical Arylation of 3-Hydroxypyridines. J. Org. Chem. 2016, 81, 5752–5758. DOI: 10.1021/acs.joc.6b00894.
  • Amaral, C. H.; Hörner, R.; Reetz, L. G.; Camargo, L. R.; Machado, F. C.; Horner, M. Crystal Structure of 1-(4-Acetylamido-Phenyl)-3-(4-Carboxyphenyl)Triazene. Anal. Sci. 2008, 24, 85–86.
  • Bhargavi, O.; Kiran, K.; Suvardhan, K.; Rekha, D.; Janardhanam, K.; Chiranjeevi, P. A Sensitive Determination of Carbofuran by Spectrophotometer Using 4,4-Azo-Bis-3,3',5,5'-Tetrabromoaniline in Various Environmental Samples. E-Journal Chem. 2006, 3, 68–77. DOI: 10.1155/2006/218793.
  • Naeimi, H.; Heidarnezhad, A. Facile, Mild and Convenient Preparation and Characterization of Some Novel Schiff Base Ligands from Synthetic Diamines and Salicylaldehyde. Bull. Chem. Soc. Eth. 2015, 29, 117–122. DOI: 10.4314/bcse.v29i1.10.
  • Mohammadi, A.; Safarnejad, M. Synthesis, Structural Characterization and Tautomeric Properties of Some Novel Bis-Azo Dyes Derived from 5-Arylidene-2,4-Thiazolidinone. Spectrochim. Acta A 2014, 126, 105–111. DOI: 10.1016/j.saa.2014.02.010.
  • Nadtoka, O.; Syromyatnikov, V. The Influence of Chemical Structure of Chromophore on Polymerization of Methacrylic Azomonomers. ChChT 2014, 8, 389–394. DOI: 10.23939/chcht08.04.389.
  • Iqbal, A.; Siddiqui, H. L.; Ashraf, C. M.; Ahmad, M.; Weaver, G. W. Synthesis, Characterization and Antibacterial Activity of Azomethine Derivatives Derived from 2-Formylphenoxyacetic Acid. Molecules 2007, 12, 245–254. DOI: 10.3390/12020245.
  • Prashanth, M. K.; Madaiah, M.; Revanasiddappa, H. D.; Amruthesh, K. N. Synthesis, Characterization, and BSA Binding Studies of Some New Benzamides Related to Schiff Base. ISRN Org. Chem. 2013, 2013, 1–12. DOI: 10.1155/2013/791591.
  • Al-Jamali, N. M.; Jameel, M.; Alhaidari, A. A. Synthesis of Oxazipne Compounds via Schiff Bases. World J. Pharm. Sci. 2013, 1, 163–167.
  • Shan, B.; Tong, X.; Xiong, W.; Qiu, W.; Tang, B.; Lu, R.; Ma, W.; Luo, Y.; Zhang, S. A New Kind of H-Acid Monoazo-Anthraquinone Reactive Dyes with Surprising Colour. Dyes Pigments 2015, 123, 44–54. DOI: 10.1016/j.dyepig.2015.07.001.
  • Muthumani, P.; Meera, R.; Venkatraman, S.; Murugan.; Devi, P. Synthesis and Biological Study of Some Novel Schiff’s Bases of Indazolone Derivatives. J. Chem. Pharm. Res. 2010, 2, 433–443.
  • Patel, R. V.; Patel, P. K.; Kumari, P.; Rajani, D. P.; Chikhalia, K. H. Synthesis of Benzimidazolyl-1,3,4-Oxadiazol-2ylthio-N-Phenyl (Benzothiazolyl) Acetamides as Antibacterial, Antifungal and Antituberculosis Agents. Eur. J. Med. Chem. 2012, 53, 41–51. DOI: 10.1016/j.ejmech.2012.03.033.
  • (a) Chhatriwala, N. M.; Patel, A. B.; Patel, R. V.; Kumari, P. In Vitro Biological Investigations of Novel Piperazine Based Heterocycles. J. Chem. Res. 2014, 38, 611–616. (b) Patel, A. B.; Patel, R. V.; Kumari, P.; Rajani, D. P.; Chikhalia, K. H. Synthesis of Potential Antitubercular and Antimicrobial s-Triazine-Based Scaffolds via Suzuki Cross-Coupling Reaction. Med. Chem. Res. 2013, 22, 367–381. DOI: 10.3184/174751914X14116443659287.
  • Sovic, I.; Viskic, M.; Bertos, B.; Ester, K.; Kralj, M.; Hranjec, M.; Karminski-Zamola, G. Exploring Antiproliferative Activity of Heteroaromatic Amides and Their Fused Derivatives Using 3D-QSAR, Synthesis, and Biological Tests. Monatsh. Chem. 2015, 146, 1503–1517. DOI: 10.1007/s00706-015-1478-8.
  • Shin, Y.; Lim, S. M.; Yan, H. H.; Jung, S.; Fang, Z.; Jung, K. H.; Hong, S.-S.; Hong, S. Optimization and Biological Evaluation of Aminopyrimidine-Based IκB Kinase β Inhibitors with Potent anti-Inflammatory Effects. Eur. J. Med. Chem. 2016, 123, 544–556. DOI: 10.1016/j.ejmech.2016.07.075.
  • Ashwell, M. A.; Lapierre, J.; Brassard, C.; Bresciano, K.; Bull, C.; Cornell-Kennon, S.; Eathiraj, S.; France, D. S.; Hall, T.; Hill, J.; et al. Discovery and Optimization of a Series of 3-(3-Phenyl-3H-Imidazo[4,5-b]Pyridin-2-yl)Pyridin-2-Amines: Orally Bioavailable, Selective, and Potent ATP-Independent Akt Inhibitors. J. Med. Chem. 2012, 55, 5291–5310. DOI: 10.1021/jm300276x.
  • Sun, D.; Yang, Y.; Lyu, J.; Zhou, W.; Song, W.; Zhao, Z.; Chen, Z.; Xu, Y.; Li, H. Discovery and Rational Design of Pteridin-7(8H)-One-Based Inhibitors Targeting FMS-like Tyrosine Kinase 3 (FLT3) and Its Mutants. J. Med. Chem. 2016, 59, 6187–6200. DOI: 10.1021/acs.jmedchem.6b00374.
  • Bursavich, M. G.; Lombardi, S.; Gilbert, A. M. Expedient Parallel Synthesis of 2-Amino-4-Heteroarylpyrimidines. Org. Lett. 2005, 7, 4113–4116. DOI: 10.1021/ol051339z.
  • Garofalo, A.; Goossens, L.; Lemoine, A.; Farce, A.; Arlot, Y.; Depreux, P. Quinazoline-Urea, New Protein Kinase Inhibitors in Treatment of Prostate Cancer. J. Enzyme Inhib. Med. Chem. 2010, 25, 158–171. DOI: 10.3109/14756360903169485.
  • Drabczynska, A.; Muller, C. E.; Lacher, S. K.; Schumacher, B.; Wojciechowska, J. K.; Nasal, A.; Kawczak, P.; Yuzlenko, O.; Pekala, E.; K-Kononowicza, K. Synthesis and Biological Activity of Tricyclic Aryloimidazo-, Pyrimido-, and Diazepinopurinediones. Bioorg. Med. Chem. 2006, 14, 7258–7281. DOI: 10.1016/j.bmc.2006.06.052.
  • Ghaemy, M.; Barghamadi, M. Synthesis and Properties of Organosoluble Polyimides Based on Novel Flourene-Ring Containing Diacetamido-Diamine. J. Appl. Polym. Sci. 2009, 112, 815–821. DOI: 10.1002/app.29077.
  • Davood, A.; Amini, M.; Azimidoost, L.; Rahmatpour, S.; Nikbakht, A.; Iman, M.; Shafaroodi, H.; Ansari, A. Docking, Synthesis, and Pharmacological Evaluation of Isoindoline Derivatives as Anticonvulsant Agents. Med. Chem. Res. 2013, 22, 3177–3184. DOI: 10.1007/s00044-012-0256-y.
  • (A) Hekmatshoar, R.; Beheshtiha, S. Y. S.; Soltani, F. Synthesis and Absorption Properties of Some 4-Thioaryl-1,8-Naphthalimides and 4-Thioaryl-7H-Benzimidazo[2,1-a]Benz[d,c]Isoquinolin-7-One Derivatives. Phosphorus Sulfur Silicon 2006, 181, 2535–2540. DOI: 10.1080/10426500600758373.
  • Garcıa, L. C.; Martinez, R. Synthesis and In Vitro Cytotoxic Activity of Pyrrolo[2,3-e]Indole Derivatives and a Dihydro Benzoindole Analogue. Eur. J. Med. Chem. 2002, 37, 261–266. DOI: 10.1016/S0223-5234(01)01328-9.
  • Kumar, B. P.; Venkataraman, S.; Meera, R.; Devi, P. Synthesis of Some Novel Piperidone Linked Bisquinolines. Int. J. Chem. Sci. 2011, 9, 69–79.
  • Dotsenko, V. V.; Krivokolysko, S. G. Mannich Reaction in the Synthesis of N,S-Containing Heterocycles. 14*. Unexpected Formation of Thiazolo[3,2-a]Pyridines in the Aminoalkylation of N-Methyl-Morpholinium 4-Aryl-3-Cyano-6-Oxo-1,4,5,6-Tetrahydropyrid-Ine-2-Thiolates by Isobutyraldehyde and Primary Amines. Chem. Heterocycl. Compd. 2012, 48, 672–676. DOI: 10.1007/s10593-012-1042-y.
  • Nagorichna, I. V.; Garazd, M. M.; Garazd, Y. L.; Khilya, V. P. Synthesis of Angular Dihydrooxazinocoumarins from 3-Hydroxy[b,d]Pyran-6-One. Chem. Nat. Compd. 2007, 43, 15–18. DOI: 10.1007/s10600-007-0054-9.
  • Arora, M.; Saravanan, J.; Mohan, S.; Bhattacharjee, S. Synthesis, Characterization and Antimicrobial Activity of Some Schiff Bases of 2-amino-N-(p-Acetamidophenyl Carboxamido)-4,5,6,7-Tetramethylene Thiophenes. Int. J. Pharm. Pharm. Sci. 2013, 5, 315–319.
  • Gionanni, J. The Reaction of Ethyl Acetoacetate with Amino-Acetalinide. Gazza. Chim. Ital. 1941, 71, 53–57.
  • Tiwari, S. S.; Swaroop, A. A Search for New Oral Hypoglycemic Agents. I. Synthesis of Some New Substituted Thioureas. J. Indian Chem. Soc. 1961, 38, 245–248.
  • Davies, R. J.; Pierce, A. C.; Forster, C.; Grey, R.; Xu, J.; Arnost, M.; Choquette, D.; Galullo, V.; Tian, S.-K.; Henkel, G.; et al. Design, Synthesis, and Evaluation of a Novel Dual FMS-like Tyrosine Kinase 3/Stem Cell Factor Receptor (FLT3/c-KIT) Inhibitor for the Treatment of Acute Myelogenous Leukemia. J. Med. Chem. 2011, 54, 7184–7192. DOI: 10.1021/jm200712h.
  • Carranco, I.; Diaz, J. L.; Jimenez, O.; Vendrell, M.; Albericio, F.; Royo, M.; Lavilla, R. Multicomponent Reactions with Dihydroazines: Efficient Synthesis of a Diverse Set of Pyrido-Fused Tetrahydroquinolines. J. Comb. Chem. 2005, 7, 33–41. DOI: 10.1021/cc049877a.
  • Mo, F.; Qiu, D.; Jiang, Y.; Zhang, Y.; Wang, J. A Base-Free, One-Pot Diazotization/Cross-Coupling of Anilines with Arylboronic Acids. Tetrahedron Lett. 2011, 52, 518–522. DOI: 10.1016/j.tetlet.2010.11.099.
  • Troisi, F.; Russo, A.; Gaeta, C.; Bifulco, G.; Neri, P. Aramidocalix[4]Arenes as New Anion Receptors. Tetrahedron Lett. 2007, 48, 7986–7989. DOI: 10.1016/j.tetlet.2007.09.046.
  • Abdel-Latif, E.; Keshk, E. M.; Saeed, A.; Khalil, A. M. Synthesis and Anticancer Evaluation of Some New Heterocyclic Scaffolds Incorporating the Acetanilide Moiety. Mod. Org. Chem. Res. 2017, 2, 112–123. DOI: 10.22606/mocr.2017.23004.
  • Abdel-Latif, E.; Keshk, E. M.; Khalil, A. M.; Saeed, A.; Metwally, H. M. Synthesis, Characterization and anti-Cancer Activity (MCF-7) of Some Acetanilide-Based Heterocycles. J. Heterocyclic Chem. 2018, 55, 2334–2341. DOI: 10.1002/jhet.3294.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.