Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 49, 2019 - Issue 19
367
Views
6
CrossRef citations to date
0
Altmetric
Articles

Synthesis, molecular docking, antimicrobial, antiquorum-sensing and antiproliferative activities of new series of pyrazolo[3,4-b]pyridine analogs

, , , &
Pages 2466-2487 | Received 11 Mar 2019, Published online: 13 Jul 2019

References

  • Sekyere, J. O.; Asante, J. Emerging Mechanisms of Antimicrobial Resistance in Bacteria and Fungi: Advances in the Era of Genomics. Future Microbiol. 2018, 13, 241–262. DOI: 10.2217/fmb-2017-0172.
  • Abisado, R. G.; Benomar, S.; Klaus, J. R.; Dandekar, A. A.; Chandler, J. R. Bacterial Quorum Sensing, and Microbial Community Interactions. mBio. 2018, 9, 1–13. DOI: 10.1128/mBio.01749-18.
  • Haque, D. S.; Ahmad, F.; Dar, S. A.; Jawed, A.; Mandal, R. K.; Wahid, M.; Lohani, M.; Khan, S.; Singh, V.; Akhter, N. Developments in Strategies for Quorum Sensing Virulence Factor Inhibition to Combat Bacterial Drug Resistance. Microb. Pathog. 2018, 121, 293–302. DOI: 10.1016/j.micpath.2018.05.046.
  • Gerdt, J. P.; Blackwell, H. E. Competition Studies Confirm Two Major Barriers That Can Preclude the Spread of Resistance to Quorum-Sensing Inhibitors in Bacteria. ACS Chem. Biol. 2014, 9, 2291–2299. DOI: 10.1021/cb5004288.
  • Chaffer, C. L.; Weinberg, R. A. A Perspective on Cancer Cell Metastasis. Science 2011, 331, 1559–1564. DOI: 10.1126/science.1203543.
  • Baraldi, P. G.; Bovero, A.; Fruttarolo, F.; Preti, D.; Tabrizi, M. A.; Pavani, M. G.; Romagnoli, R. DNA Minor Groove Binders as Potential Antitumor and Antimicrobial Agents. Med. Res. Rev. 2004, 24, 475–528.
  • Kathiravan, M. K.; Khilare, M. M.; Nikoomanesh, K.; Chothe, A. S.; Jain, K. S. Topoisomerase as Target for Antibacterial and Anticancer Drug Discovery. J. Enzyme Inhib. Med. Chem. 2013, 28, 419–435. DOI: 10.3109/14756366.2012.658785.
  • Pommier, Y.; Leo, E.; Zhang, H.; Marchand, C. DNA Topoisomerases and Their Poisoning by Anticancer and Antibacterial Drugs. Chem. Biol. 2010, 17, 421–433. DOI: 10.1016/j.chembiol.2010.04.012.
  • Nitiss, J. L. Targeting DNA Topoisomerase II in Cancer Chemotherapy. Nat. Rev. Cancer 2009, 9, 338–350. DOI: 10.1038/nrc2607.
  • Kripalani, K. J.; Dreyfuss, J.; Nemec, J.; Cohen, A. I.; Meeker, F.; Egli, P. Biotransformation in the Monkey of Cartazolate (SQ 65,396), a Substituted Pyrazolopyridine Having Anxiolytic Activity. Xenobiotica 1981, 11, 481–488. DOI: 10.3109/00498258109045858.
  • Thompson, S. A.; Wingrove, P. B.; Connelly, L.; Whiting, P. J.; Wafford, K. A. Tracazolate Reveals a Novel Type of Allosteric Interaction with Recombinant Gamma-Aminobutyric Acid(A) Receptors. Mol. Pharmacol. 2002, 61, 861–869. DOI: 10.1124/mol.61.4.861.
  • Marcade, M.; Bourdin, J.; Loiseau, N.; Peillon, H.; Rayer, A.; Drouin, D.; Schweighoffer, F.; Désiré, L. Etazolate, a Neuroprotective Drug Linking GABA(A) Receptor Pharmacology to Amyloid Precursor Protein Processing. J. Neurochem. 2008, 106, 392–404. DOI: 10.1111/j.1471-4159.2008.05396.x.
  • Mohamed, H. S. H.; Gad, M.N.M.; El-Zanaty, A. M.; Ahmed, S. A. Synthesis, Characterization and Antibacterial Activities of Novel Thieno, Pyrazol Pyridines and Pyrazolopyrimidine Derivatives. Der Pharma Chem. 2018, 10 (5), 121–127.
  • Maqbool, T.; Nazeer, A.; Khan, M. N.; Elliott, M. C.; Khan, M. A.; Ashraf, M.; Nasrullah, M.; Arshad, S.; Munawar, M. A. Pyrazolopyridines II: Synthesis and Antibacterial Screening of 6-Aryl-3-Methyl-1-Phenyl-1H-Pyrazolo[3,4-b]Pyridine-4-Carboxylic Acids. Asian J. Chem. 2014, 26, 2870–2872. DOI: 10.14233/ajchem.2014.15918.
  • Hamama, W. S.; El-Gohary, H. G.; Soliman, M.; Zoorob, H. H. A Versatile Synthesis, PM3-Semiempirical, Antibacterial, and Antitumor Evaluation of Some Bioactive Pyrazoles. J. Heterocyclic Chem. 2012, 49, 543–554. DOI: 10.1002/jhet.806.
  • Quiroga, J.; Villarreal, Y.; Gálvez, J.; Ortíz, A.; Insuasty, B.; Abonia, R.; Raimondi, M.; Zacchino, S. Synthesis and Antifungal in Vitro Evaluation of Pyrazolo[3,4-b]Pyridines Derivatives Obtained by aza-Diels-Alder Reaction and Microwave Irradiation. Chem. Pharm. Bull. 2017, 65, 143–150. DOI: 10.1248/cpb.c16-00652.
  • El-Gohary, N. S.; Shaaban, M. I. Design, Synthesis, Antimicrobial, Antiquorum-Sensing and Antitumor Evaluation of New Series of Pyrazolopyridine Derivatives. Eur. J. Med. Chem. 2018, 157, 729–742. DOI: 10.1016/j.ejmech.2018.08.008.
  • El-Gohary, N. S.; Shaaban, M. I. New Pyrazolopyridine Analogs: Synthesis, Antimicrobial, Antiquorum-Sensing and Antitumor Screening. Eur. J. Med. Chem. 2018, 152, 126–136. DOI: 10.1016/j.ejmech.2018.04.025.
  • Hamza, A.; El-Sayed, H. A.; Assy, M. G.; Ouf, N. H.; Farhan, M. E. Synthesis and Antimicrobial Activity of Some New Triazine, 1,3-Oxazine, Fused Pyridine and Pyrimidine Derivatives. World Appl. Sci. J. 2018, 36, 637–645.
  • Abdel-Mohsen, S. A.; El-Emary, T. I. New Pyrazolo[3,4-b]Pyridines: Synthesis and Antimicrobial Activity. Der Pharma Chem. 2018, 10 (4), 44–51.
  • Samar, C.; Ismail, A.; Helmi, T.; Khiari, J.; Bassem, J. Substituted Pyrazolo[3,4-b]Pyridin-3-ones and Pyrazolo[3,4-b]Pyridine-5-Carbaldehyde, New One-Pot Synthesis Strategy Amelioration Using Vinamidinium Salts, Antibacterial and Antifungal Activities Promising Environmental Protection. J. Bacteriol. Parasitol. 2017, 8, 1–8. DOI: 10.4172/2155-9597.1000310.
  • Salem, M. S.; Ali, M. A. M. Novel Pyrazolo[3,4-b]Pyridine Derivatives: Synthesis, Characterization, Antimicrobial and Antiproliferative Profile. Biol. Pharm. Bull. 2016, 39, 473–483. DOI: 10.1248/bpb.b15-00586.
  • Sindhu, J.; Singh, H.; Khurana, J. M.; Bhardwaj, J. K.; Saraf, P.; Sharma, C. Synthesis and Biological Evaluation of Some Functionalized 1H-1,2,3-Triazole Tethered Pyrazolo[3,4-b]Pyridin-6(7H)-Ones as Antimicrobial and Apoptosis Inducing Agents. Med. Chem. Res. 2016, 25, 1813–1830. DOI: 10.1007/s00044-016-1604-0.
  • Hafez, H. N.; El-Gazzar, A. R. B. A. Synthesis of Pyranopyrazolo N-Glycoside and Pyrazolopyranopyrimidine C-Glycoside Derivatives as Promising Antitumor and Antimicrobial Agents. Acta Pharm. 2015, 65, 215–233. DOI: 10.1515/acph-2015-0022.
  • Nagender, P.; Malla, R. G.; Naresh, K. R.; Poornachandra, Y.; Ganesh, K. C.; Narsaiah, B. Synthesis, Cytotoxicity, Antimicrobial and anti-Biofilm Activities of Novel Pyrazolo[3,4-b]Pyridine and Pyrimidine Functionalized 1,2,3-Triazole Derivatives. Bioorg. Med. Chem. Lett. 2014, 24, 2905–2908. DOI: 10.1016/j.bmcl.2014.04.084.
  • El-Borai, M. A.; Rizk, H. F.; Abd-Aal, M. F.; El-Deeb, I. Y. Synthesis of Pyrazolo[3,4-b]Pyridines under Microwave Irradiation in Multi-Component Reactions and Their Antitumor and Antimicrobial activities-Part 1. Eur. J. Med. Chem. 2012, 48, 92–96. DOI: 10.1016/j.ejmech.2011.11.038.
  • El-Borai, M. A.; Rizk, H. F.; Beltagy, D. M.; El-Deeb, I. Y. Microwave-Assisted Synthesis of Some New Pyrazolopyridines and Their Antioxidant, Antitumor and Antimicrobial Activities. Eur. J. Med. Chem. 2013, 66, 415–422. DOI: 10.1016/j.ejmech.2013.04.043.
  • El-Borai, M. A.; Awad, M. K.; Rizk, H. F.; Atlam, F. M. Design, Synthesis and Docking Study of Novel Imidazolyl Pyrazolopyridine Derivatives as Antitumor Agents Targeting MCF7. Curr. Org. Synth. 2018, 15, 275–285. DOI: 10.2174/1570179414666170512125759.
  • Metwally, N. H.; Deeb, E. A. Synthesis, Anticancer Assessment on Human Breast, Liver and Colon Carcinoma Cell Lines and Molecular Modeling Study Using Novel Pyrazolo[4,3-c]Pyridine Derivatives. Bioorg. Chem. 2018, 77, 203–214. DOI: 10.1016/j.bioorg.2017.12.032.
  • Rao, H. S. P.; Adigopula, L. N.; Ramadas, K. One-Pot Synthesis of Densely Substituted Pyrazolo[3,4-b]-4,7-Dihydropyridines. ACS Comb. Sci. 2017, 19, 279–285. DOI: 10.1021/acscombsci.6b00156.
  • Nagender, P.; Kumar, R. N.; Reddy, G. M.; Swaroop, D. K.; Poornachandra, Y.; Kumar, C. G.; Narsaiah, B. Synthesis of Novel Hydrazone and Azole Functionalized Pyrazolo[3,4-b]Pyridine Derivatives as Promising Anticancer Agents. Bioorg. Med. Chem. Lett. 2016, 26, 4427–4432. DOI: 10.1016/j.bmcl.2016.08.006.
  • Eissa, I. H.; El-Naggar, A. M.; El-Hashash, M. A. Design, Synthesis, Molecular Modeling and Biological Evaluation of Novel 1H-Pyrazolo[3,4-b]Pyridine Derivatives as Potential Anticancer Agents. Bioorg. Chem. 2016, 67, 43–56. DOI: 10.1016/j.bioorg.2016.05.006.
  • Zhao, B.; Li, Y.; Xu, P.; Dai, Y.; Luo, C.; Sun, Y.; Ai, J.; Geng, M.; Duan, W. Discovery of Substituted 1H-Pyrazolo[3,4-b]Pyridine Derivatives as Potent and Selective FGFR Kinase Inhibitors. ACS Med. Chem. Lett.. 2016, 7, 629–634. DOI: 10.1021/acsmedchemlett.6b00066.
  • Fathy, U.; Younis, A.; Awad, H. M. Ultrasonic Assisted Synthesis, Anticancer and Antioxidant Activity of Some Novel Pyrazolo[3,4-b]Pyridine Derivatives. J. Chem. Pharm. Res. 2015, 7, 4–12.
  • Elneairy, M. A. A.; Eldine, S. M.; Mohamed, A. S. I. Novel Fused Thienopyridine and Pyrazolopyridine Derivatives: Synthesis, Characterization and Cytotoxicity. Der Pharma Chem. 2015, 7 (5), 284–295.
  • Tabrizi, M. A.; Baraldi, P. G.; Baraldi, S.; Prencipe, F.; Preti, D.; Saponaro, G.; Romagnoli, R.; Gessi, S.; Merighi, S.; Stefanelli, A.; et al. Synthesis and Biological Evaluation of Pyrazolo[3,4-b]Pyridin-4-Ones as a New Class of Topoisomerase II Inhibitors. Med. Chem. 2015, 11, 342–353.
  • Mohamed, N. R.; Khaireldin, N. Y.; Fahmy, A. F.; El-Sayed, A. A. Facile Synthesis of Fused Nitrogen Containing Heterocycles as Anticancer Agents. Der Pharma Chem. 2010, 2 (1), 400–417.
  • Binobaid, A.; Iglesias, M.; Beetstra, D. J.; Kariuki, B.; Dervisi, A.; Fallis, I. A.; Cavell, K. J. Expanded Ring and Functionalised Expanded Ring N-Heterocyclic Carbenes as Ligands in Catalysis. Dalton Trans. 2009, 0 (35), 7099–7112. DOI: 10.1039/b909834h.
  • Leeming, M. R. G.; Penrose, A. B. Triazapentadienes Useful as Miticides. Ger. Offen. 1977, DE 2717280 A1 19771110.
  • El-Gohary, N. S.; Shaaban, M. I. Antimicrobial and Antiquorum-Sensing Studies. Part 3: Synthesis and Biological Evaluation of New Series of [1,3,4]Thiadiazole and Fused [1,3,4]Thiadiazole Derivatives. Arch. Pharm. Chem. Life. Sci. 2015, 348, 283–297. DOI: 10.1002/ardp.201400381.
  • El-Gohary, N. S.; Shaaban, M. I. Synthesis, Antimicrobial, Antiquorum-Sensing, and Cytotoxic Activities of New Series of Isoindoline-1,3-Dione, Pyrazolo[5,1-a]Isoindole and Pyridine Derivatives. Arch. Pharm. Chem. Life. Sci. 2015, 348, 666–680. DOI: 10.1002/ardp.201500037.
  • Clinical Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015; M100–S25.
  • Clinical Laboratory Standards Institute (CLSI). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard, 3rd ed. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008; M27–A3.
  • Clinical Laboratory Standards Institute (CLSI). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved Standard, 2nd ed. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008; M38–A2.
  • McClean, K. H.; Winson, M. K.; Fish, L.; Taylor, A.; Chhabra, S. R.; Camara, M.; Daykin, M.; Lamb, J. H.; Swift, S.; Bycroft, B. W.; et al. Quorum Sensing and Chromobacterium violaceum: Exploitation of Violacein Production and Inhibition for the Detection of N-Acyl Homoserine Lactones. Microbiology 1997, 143, 3703–3711. DOI: 10.1099/00221287-143-12-3703.
  • Morohoshi, T.; Kato, M.; Fukamachi, K.; Kato, N.; Ikeda, T. N-Acylhomoserine Lactone Regulates Violacein Production in Chromobacterium violaceum Type Strain ATCC 12472. FEMS Microbiol. Lett. 2008, 279, 124–130. DOI: 10.1111/j.1574-6968.2007.01016.x.
  • Devescovi, G.; Kojic, M.; Covaceuszach, S.; Cámara, M.; Williams, P.; Bertani, I.; Subramoni, S.; Venturi, V. Negative Regulation of Violacein Biosynthesis in Chromobacterium violaceum. Front. Microbiol. 2017, 8, 1–11. https://doi.org/10.3389/fmicb.2017.00349
  • Denizot, F.; Lang, R. Rapid Colorimetric Assay for Cell Growth and Survival. Modifications to the Tetrazolium Dye Procedure Giving Improved Sensitivity and Reliability. J. Immunol. Methods 1986, 89, 271–277. DOI: 10.1016/0022-1759(86)90368-6.
  • Gerlier, D.; Thomasset, T. Use of MTT Colorimetric Assay to Measure Cell Activation. J. Immunol. Methods 1986, 94, 57–63.
  • Oberling, C.; Guerin, M. The Role of Viruses in the Production of Cancer. Adv. Cancer Res. 1954, 2, 353–423.
  • Sheeja, K. R.; Kuttan, G.; Kuttan, R. Cytotoxic and Antitumour Activity of Berberine. Amala Res. Bull. 1997, 17, 73–76.
  • Clarkson, B. D.; Burchenal, J. H. Preliminary Screening of Antineoplastic Drugs. Prog. Clin. Cancer 1965, 1, 625–629.
  • Burres, N. S.; Frigo, A.; Rasmussen, R. R.; McAlpine, J. B. A Colorimetric Microassay for the Detection of Agents That Interact with DNA. J. Nat. Prod. 1992, 55, 1582–1587.
  • Collin, F.; Karkare, S.; Maxwell, A. Exploiting Bacterial DNA Gyrase as a Drug Target: Current State and Perspectives. Appl. Microbiol. Biotechnol. 2011, 92, 479–497. DOI: 10.1007/s00253-011-3557-z.
  • Chou, L. C.; Chen, C. T.; Lee, J. C.; Way, T. D.; Huang, C. H.; Huang, S. M.; Teng, C. M.; Yamori, T.; Wu, T. S.; Sun, C. M.; et al. Synthesis and Preclinical Evaluations of 2-(2-Fluorophenyl)-6,7-Methylenedioxyquinolin-4-one Monosodium Phosphate (CHM-1-P-Na) as a Potent Antitumor Agent. J. Med. Chem. 2010, 53, 1616–1629. DOI: 10.1021/jm901292j.
  • Larsen, A. K.; Escargueil, A. E.; Skladanowski, A. Catalytic Topoisomerase II Inhibitors in Cancer Therapy. Pharmacol. Ther. 2003, 99, 167–181.
  • Smith, N. A.; Byl, J. A.; Mercer, S. L.; Deweese, J. E.; Osheroff, N. Etoposide Quinone Is a Covalent Poison of Human Topoisomerase IIβ. Biochemistry 2014, 53, 3229–3236. DOI: 10.1021/bi500421q.
  • Thomsen, R.; Christensen, M. H. MolDock: A New Technique for High-Accuracy Molecular Docking. J. Med. Chem. 2006, 49, 3315–3321. DOI: 10.1021/jm051197e.
  • LeadIT version 2.3.2; BioSolveIT GmbH, Sankt Augustin, Germany, 2017., www.biosolveit.de/LeadIT.
  • Wolber, G.; Langer, T. LigandScout: 3D Pharmacophores Derived from Protein Bound Ligands and Their Use as Virtual Screening Filters. J. Chem. Inf. Model. 2005, 45, 160–169. DOI: 10.1021/ci049885e.
  • Kadam, R. U.; Roy, N. Recent Trends in Drug Likeness Prediction: A Comprehensive Review of in Silico Methods. Indian J. Pharm. Sci. 2007, 69, 609–615. DOI: 10.4103/0250-474X.38464.
  • Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. DOI: 10.1016/S0169-409X(96)00423-1.
  • https://www.molinspiration.com/cgi-bin/properties.
  • Veber, D. F.; Johnson, S. R.; Cheng, H. Y.; Smith, B. R.; Ward, K. W.; Kopple, K. D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45, 2615–2623. DOI: 10.1021/jm020017n.
  • https://preadmet.bmdrc.kr/toxicity/.
  • https://molsoft.com/mprop/.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.