Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 49, 2019 - Issue 19
1,483
Views
66
CrossRef citations to date
0
Altmetric
Synthetic Communications Review

Recent advances in heterogeneous catalysts for the synthesis of imidazole derivatives

, , , , &
Pages 2437-2459 | Received 25 Feb 2019, Published online: 15 Jul 2019

References

  • Freire, C.; Pereira, C.; Rebelo, S. Green Oxidation Catalysis with Metal Complexes: From Bulk to Nano Recyclable Hybrid Catalysts. Catalysis 2012, 24, 116–203. DOI: 10.1039/1465-1920.
  • Vedrine, J. C. Heterogeneous Catalysis on Metal Oxides. Catalysts 2017, 7, 341. DOI: 10.3390/catal7110341.
  • Climent, M. J.; Corma, A.; Iborra, S. Homogeneous and Heterogeneous Catalysts for Multicomponent Reactions. RSC Adv. 2012, 2, 16–58. DOI: 10.1039/C1RA00807B.
  • Bhaskaruni, S. V. H. S.; Maddila, S.; Gangu, K. K.; Jonnalagadda, S. B. A Review on Multi-Component Green Synthesis of N-Containing Heterocycles Using Mixed Oxides as Heterogeneous Catalysts. Arab. J. Chem. 2017. DOI: 10.1016/j.arabjc.2017.09.016.
  • Ruhul, A. M.; Kalam, M. A.; Masjuki, H. H.; Fattah, I. M. R.; Reham, S. S.; Rashed, M. M. State of the Art of Biodiesel Production Processes: A Review of the Heterogeneous Catalyst. RSC Adv. 2015, 5, 101023–101044. DOI: 10.1039/C5RA09862A.
  • Latchubugata, C. S.; Kondapaneni, R. V.; Patluri, K. K.; Virendra, U.; Vedantam, S. Kinetics and Optimization Studies Using Response Surface Methodology in Biodiesel Production Using Heterogeneous Catalyst. Chem. Eng. Res. Des. 2018, 135, 129–139. DOI: 10.1016/j.cherd.2018.05.022.
  • Sharma, S.; Saxena, V.; Baranwal, A.; Chandra, P.; Pandey, L. M. Engineered Nanoporous Materials Mediated Heterogeneous Catalysts and Their Implications in Biodiesel Production. Mater. Sci. Energy Technol. 2018, 1, 11–21. DOI: 10.1016/j.mset.2018.05.002.
  • Abdullah, S. H. Y. S.; Hanapi, N. H. M.; Azid, A.; Umar, R.; Juahir, H.; Khatoon, H.; Endut, A. A Review of Biomass-Derived Heterogeneous Catalyst for a Sustainable Biodiesel Production. Renew. Sust. Energy Rev. 2017, 70, 1040–1051. DOI: 10.1016/j.rser.2016.12.008.
  • Jinisha, R.; Gandhimathi, R.; Ramesh, S. T.; Nidheesh, P. V.; Velmathi, S. Removal of Rhodamine B Dye from Aqueous Solution by Electro-Fenton Process Using Iron-Doped Mesoporous Silica as a Heterogeneous Catalyst. Chemosphere 2018, 200, 446–454. DOI: 10.1016/j.chemosphere.2018.02.117.
  • Heroguel, F.; Rozmysłowicz, B.; Luterbacher, J. S. Improving Heterogeneous Catalyst Stability for Liquid-Phase Biomass Conversion and Reforming. Chimia 2015, 69, 582–591. DOI: 10.2533/chimia.2015.582.
  • Pan, T.; Deng, J.; Xu, Q.; Xu, Y.; Guo, X. Q.; Fu, Y. Catalytic Conversion of Biomass-Derived Levulinic Acid to Valerate Esters as Oxygenated Fuels Using Supported Ruthenium Catalysts. Green Chem. 2013, 15, 2967–2974. DOI: 10.1039/c3gc40927a.
  • Zecchina, A.; Lamberti, C.; Bordiga, S. Surface Acidity and Basicity: General Concepts. Catal. Today 1998, 41, 169–177. DOI: 10.1016/S0920-5861(98)00047-9.
  • Ruban, A.; Hammer, B.; Stoltze, P.; Skriver, H. L.; Norskov, J. K. Surface Electronic Structure and Reactivity of Transition and Noble Metals. J. Mol. Catal. A Chem. 1997, 115, 421–429. DOI: 10.1016/S1381-1169(96)00348-2.
  • Karuppaiah, S.; Thangamariyappan, S.; Murugan, K.; Ponnusamy, S. One-Pot Multi-Component Synthesis of N,N’-Alkylidene Bisamides and Imidazoles Using Heteropoly-11-Tungsto-1-Vanadophosphoric Acid Supported on Natural Clay as Catalyst: A Green Approach. Synth. Commun. 2017, 47, 2115–2126. DOI: 10.1080/00397911.2017.1366524.
  • Vedrine, J. C. Acid–Base Characterization of Heterogeneous Catalysts: An up-to-Date Overview. Res. Chem. Intermed. 2015, 41, 9387–9423. DOI: 10.1007/s11164-015-1982-9.
  • Gu, Y. Multicomponent Reactions in Unconventional Solvents: State of the Art. Green Chem. 2012, 14, 2091–2128. DOI: 10.1039/c2gc35635j.
  • Cioc, R. C.; Ruijter, E.; Orru, R. V. A. Multicomponent Reactions: Advanced Tools for Sustainable Organic Synthesis. Green Chem. 2014, 16, 2958–2975. DOI: 10.1039/C4GC00013G.
  • Kaur, R.; Chaudhary, S.; Kumar, K.; Gupta, M. K.; Rawal, R. K. Recent Synthetic and Medicinal Perspectives of Dihydropyrimidinones: A Review. Eur. J. Med. Chem. 2017, 132, 108–134. DOI: 10.1016/j.ejmech.2017.03.025.
  • Subhedar, D. D.; Shaikh, M. H.; Arkile, M. A.; Yeware, A.; Sarkar, D.; Shingate, B. B. Facile Synthesis of 1,3-Thiazolidin-4-Ones as Antitubercular Agents. Bioorg. Med. Chem. Lett. 2016, 26, 1704–1708. DOI: 10.1016/j.bmcl.2016.02.056.
  • Iinuma, Y.; Kozawa, S.; Ishiyama, H.; Tsuda, M.; Fukushi, E.; Kawabata, J.; Fromont, J.; Kobayashi, J. Gesashidine A, a Beta-carboline Alkaloid with an Imidazole ring from a Thorectidae Sponge . J. Nat. Prod. 2005, 68, 1109–1110. DOI: 10.1021/np050070p.
  • Negi, A.; Alex, J. M.; Amrutkar, S. M.; Baviskar, A. T.; Joshi, G.; Singh, S.; Banerjee, U. C.; Kumar, R. Imine/Amide–Imidazole Conjugates Derived from 5-Amino-4-cyanon1-Substituted Benzyl Imidazole: Microwave-Assisted Synthesis and Anticancer Activity via Selective topoisomerase-II-a Inhibition. Bioorg. Med. Chem. 2015, 23, 5654–5661. DOI: 10.1016/j.bmc.2015.07.020.
  • Schemeth, D.; Kappacher, C.; Rainer, M.; Thalinger, R.; Bonn, G. K. Comprehensive Evaluation of Imidazole-Based Polymers for the Enrichment of Selected Non-Steroidal Anti-Inflammatory Drugs. Talanta 2016, 153, 177–185. DOI: 10.1016/j.talanta.2016.03.015.
  • Wen, S. Q.; Jeyakkumar, P.; Avula, S. R.; Zhang, L.; Zhou, C. H. Discovery of Novel Berberine Imidazoles as Safe Antimicrobial Agents by down Regulating Ros Generation. Bioorg. Med. Chem. Lett. 2016, 26, 2768–2773. DOI: 10.1016/j.bmcl.2016.04.070.
  • Vazquez, G. N.; Figueroa, S. H.; Piedra, M. T.; Galicia, J. V.; Leyva, J. C. R.; Soto, S. E.; Rivera, I. L.; Guardarrama, B. A.; Gomez, Y. R.; Molina, R. V.; Barajas, M. I. Synthesis, Vasorelaxant Activity and Antihypertensive Effect of Benzo[d]Imidazole Derivatives. Bioorg. Med. Chem. 2010, 18, 3985–3991. DOI: 10.1016/j.bmc.2010.04.027.
  • Khiratkar, A. G.; Balinge, K. R.; Patle, D. S.; Krishnamurthy, M.; Cheralathan, K. K.; Bhagat, P. R. Transesterification of Castor Oil Using Benzimidazolium Based Brønsted Acid Ionic Liquid Catalyst. Fuel 2018, 231, 458–467. DOI: 10.1016/j.fuel.2018.05.127.
  • Mallakpour, S.; Rafiee, Z. Ionic Liquids as Environmentally Friendly Solvents in Macromolecules Chemistry and Technology, Part I. J. Polym. Environ. 2011, 19, 447–484. DOI: 10.1007/s10924-011-0287-3.
  • Binnemans, K. Ionic Liquid Crystals. Chem. Rev. 2005, 105, 4148–4204. DOI: 10.1021/cr0400919.
  • Anderson, E. B.; Long, T. E. Imidazole- and Imidazolium-Containing Polymers for Biology and Material Science Applications. Polymer 2010, 51, 2447–2454. DOI: 10.1016/j.polymer.2010.02.006.
  • Yin, K.; Zhang, Z.; Yang, L.; Hirano, S. I. An Imidazolium-Based Polymerized Ionic Liquid via Novel Synthetic Strategy as Polymer Electrolytes for Lithium Ion Batteries. J. Power Sources 2014, 258, 150–154. DOI: 10.1016/j.jpowsour.2014.02.057.
  • Sankar, M.; Ajithkumar, T. G.; Sankar, G.; Manikandan, P. Supported Imidazole as Heterogeneous Catalyst for the Synthesis of Cyclic Carbonates from Epoxides and CO2. Catal. Commun. 2015, 59, 201–205. DOI: 10.1016/j.catcom.2014.10.026.
  • Heinrich, D. Ueber Die Einwirkung Des Ammoniaks Auf Glyoxal. Annalen Der Chemie Und Pharmacie 1858, 107, 199–208.
  • Naureen, S.; Ijaz, F.; Nazeer, A.; Chaudhry, F.; Munawar, M. A.; Khan, M. A. Facile, Eco-Friendly, One-Pot Protocol for the Synthesis of Indole-Imidazole Derivatives Catalyzed by Amino Acids. Synth. Commun. 2017, 47, 1478–1484. DOI: 10.1080/00397911.2017.1332766.
  • Murray, R. W. Nanoelectrochemistry: Metal Nanoparticles, Nanoelectrodes, and Nanopores. Chem. Rev. 2008, 108, 2688–2720. DOI: 10.1021/cr068077e.
  • Sharifi, I.; Shokrollahi, H. Structural, Magnetic and Mossbauer Evaluation of Mn Substituted Co-Zn Ferrite Nanoparticles Synthesized by Co-Precipitation. J. Magn. Magn. Mater. 2013, 334, 36–40. DOI: 10.1016/j.jmmm.2013.01.021.
  • Kim, Y. J.; Varma, R. S. Microwave-Assisted Preparation of Cyclic Ureas from Diamines in the Presence of ZnO. Tetrahedron Lett. 2004, 45, 7205–7208. DOI: 10.1016/j.tetlet.2004.08.042.
  • Tamaddon, F.; Amrollahi, M.; Sharafat, L. A Green Protocol for Chemoselective O-Acylation in the Presence of Zinc Oxide as a Heterogeneous, Reusable and Eco-Friendly Catalyst. Tetrahedron Lett. 2005, 46, 7841–7844. DOI: 10.1016/j.tetlet.2005.09.005.
  • Marzouk, A. A.; Abu-Dief, A. M.; Abdelhamid, A. A. Hydrothermal Preparation and Characterization of ZnFe2O4 Magnetic Nanoparticles as an Efficient Heterogeneous Catalyst for the Synthesis of Multi‐Substituted Imidazoles and Study of Their anti-Inflammatory Activity. Appl. Organometal. Chem. 2018, 32, e3794. DOI: 10.1002/aoc.3794.
  • Nejatianfar, M.; Akhlaghinia, B.; Jahanshahi, R. Cu(II) Immobilized on Guanidinated Epibromohydrinfunctionalized γ-Fe2O3@Tio2 (γ-Fe2O3@Tio2 -EG-Cu(II)): a Highly Efficient Magnetically Separable Heterogeneous Nanocatalyst for One-Pot Synthesis of Highly Substituted Imidazoles. Appl. Organometal. Chem. 2018, 32, e4095. DOI:/10.1002/aoc.4095. DOI: 10.1002/aoc.4095.
  • Nemati, F.; Elhampour, A.; Natanzi, M. B. Synthesis and Characterization of Nano-Copper Ferrite as a Magnetically Separable Catalyst for the One-Pot Synthesis of 2,4,5-Trisubstituted and 1,2,4,5-Tetrasubstituted Imidazoles under Solvent-Free Condition. Inorg. Nano Met. Chem. 2017, 47, 666–671. DOI: 10.1080/15533174.2016.1212223.
  • Ramazani, A.; Rouhani, M.; Joo, S. W. Catalyst-Free Sonosynthesis of Highly Substituted Propanamide Derivatives in Water. Ultrason. Sonochem. 2016, 28, 393–399. DOI: 10.1016/j.ultsonch.2015.08.019.
  • Safaei-Ghomi, J.; Akbarzadeh, Z. Sonochemically Synthesis of Arylethynyl Linked Triarylamines Catalyzed by CuI Nanoparticles: A Rapid and Green Procedure for Sonogashira Coupling. Ultrason. Sonochem. 2015, 22, 365–370. DOI: 10.1016/j.ultsonch.2014.05.016.
  • Eidi, E.; Kassaee, M. Z.; Nasresfahani, Z. Synthesis of 2,4,5-Trisubstituted Imidazoles over Reusable CoFe2O4 Nanoparticles: An Efficient and Green Sonochemical Process. Appl. Organometal. Chem. 2016, 30, 561–565. DOI: 10.1002/aoc.3470.
  • Maleki, A.; Alrezvani, Z.; Maleki, S. Design, Preparation and Characterization of Urea-Functionalized Fe3O4/SioO2 Magnetic Nanocatalyst and Application for the One-Pot Multicomponent Synthesis of Substituted Imidazole Derivatives. Catal. Commun. 2015, 69, 29–33. DOI: 10.1016/j.catcom.2015.05.014.
  • Zarnegar, Z.; Safari, J. Fe3O4@Chitosan Nanoparticles: A Valuable Heterogeneous Nanocatalyst for the Synthesis of 2,4,5-Trisubstituted Imidazoles. RSC Adv. 2014, 4, 20932–20939. DOI: 10.1039/C4RA03176H.
  • Naeimi, H.; Aghaseyedkarimi, D. Fe3O4@SiO2-HM-SO3H as a Recyclable Heterogeneous Nanocatalyst for the Microwave-Promoted Synthesis of 2,4,5-Trisubstituted Imidazoles under Solvent Free Conditions. New J. Chem. 2015, 39, 9415–9421. DOI: 10.1039/C5NJ01273B.
  • Naeimi, H.; Aghaseyedkarimi, D. Ionophore Silica-Coated Magnetite Nanoparticles as a Recyclable Heterogeneous Catalyst for One-Pot Green Synthesis of 2,4,5-Trisubstituted Imidazoles. Dalton Trans. 2016, 45, 1243–1253. DOI: 10.1039/C5DT03488D.
  • Esmaeilpour, M.; Javidi, J.; Zandi, M. One-Pot Synthesis of Multisubstituted Imidazoles under Solvent-Free Conditions and Microwave Irradiation Using Fe3O4@SiO2-imid-PMAn Magnetic Porous Nanospheres as a Recyclable Catalyst. New J. Chem. 2015, 39, 3388–3398. DOI: 10.1039/C5NJ00050E.
  • Zarnegar, Z.; Safari, J. Catalytic Activity of cu Nanoparticles Supported on Fe3O4–Polyethylene Glycol Nano Composites for the Synthesis of Substituted Imidazoles. New J. Chem. 2014, 38, 4555–4565. DOI: 10.1039/C4NJ00645C.
  • Wu, S.-H.; Mou, C.-Y.; Lin, H.-P. Synthesis of Mesoporous Silica Nanoparticles. Chem. Soc. Rev. 2013, 42, 3862–3875. DOI: 10.1039/c3cs35405a.
  • Zhang, Y.; Hsu, B. Y. W.; Ren, C.; Li, X.; Wang, J. Silica-Based Nanocapsules: Synthesis, Structure Control and Biomedical Applications. Chem. Soc. Rev. 2015, 44, 315–335. DOI: 10.1039/C4CS00199K.
  • Berhault, G.; Lacroix, M.; Breysse, M.; Mauge, F.; Lavalley, J. C.; Nie, H.; Qu, L. Characterization of Acidic Sites of Silica-Supported Transition Metal Sulfides by Pyridine and 2,6 Dimethylpyridine Adsorption. J. Catal. 1998, 178, 555–565. DOI: 10.1006/jcat.1998.2196.
  • Nikoofar, K.; Dizgarani, S. M. HNO3@Nano SiO2: An Efficient Catalytic System for the Synthesis of Multi-Substituted Imidazoles under Solvent-Free Conditions. J. Saudi Chem. Soc. 2017, 21, 787–794. DOI: 10.1016/j.jscs.2015.11.006.
  • Borhade, A. V.; Tope, D. R.; Gite, S. G. Synthesis, Characterization and Catalytic Application of Silica Supported Tin Oxide Nanoparticles for Synthesis of 2,4,5-Tri and 1,2,4,5- Tetrasubstituted Imidazoles under Solvent-Free Conditions. Arab. J. Chem. 2017, 10, S559–S567. DOI: 10.1016/j.arabjc.2012.11.001.
  • Trong On, D.; Desplantier-Giscard, D.; Danumah, C.; Kaliaguine, S. Perspectives in Catalytic Applications of Mesostructured Materials. Appl. Catal. A Gen. 2001, 359, 299–357. DOI: 10.1016/S0926-860X(01)00842-0.
  • Ziarani, G. M.; Badiei, A.; Miralami, A. The Study of Solvent Effect on the Diastereoselectivity of Diels-Alder Reaction in the Presence of Nanoporous Silica-Supported Cerium Sulfonate Catalyst. Eur. J. Sci. Res. 2007, 18, 282–286.
  • Zhang, H. X.; Cao, A. M.; Hu, J. S.; Wan, L. J.; Lee, S. T. Electrochemical Sensor for Detecting Ultratrace Nitroaromatic Compounds Using Mesoporous SiO2-Modified Electrode. Anal. Chem. 2006, 78, 1967–1971. DOI: 10.1021/ac051826s.
  • Ziarani, G. M.; Badiei, A.; Lashgari, N.; Farahani, Z. Efficient One-Pot Synthesis of 2,4,5-Trisubstituted and 1,2,4,5-Tetrasubstituted Imidazoles Using SBA-Pr-SO3H as a Green Nano Catalyst. J. Saudi Chem. Soc. 2016, 20, 419–427. DOI: 10.1016/j.jscs.2013.01.005.
  • Ziarani, G. M.; Dashtianeh, Z.; Nahad, M. S.; Badiei, A. One-Pot Synthesis of 1,2,4,5-Tetra Substituted Imidazoles Using Sulfonic Acid Functionalized Silica (SiO2-Pr-SO3H). Arab. J. Chem. 2015, 8, 692–697. DOI: 10.1016/j.arabjc.2013.11.020.
  • Nikoofar, K.; Khademi, Z. A Review on Green Lewis Acids: Zirconium(IV) Oxydichloride Octahydrate (ZrOCl2.8H2O) and Zirconium(iv) Tetrachloride (ZrCl4) in Organic Chemistry. Res. Chem. Intermed. 2016, 42, 3929–3977. DOI: 10.1007/s11164-015-2260-6.
  • Girish, Y. R.; Kumar, K. S. S.; Thimmaiah, K. N.; Rangappa, K. S.; Shashikanth, S. ZrO2-β-Cyclodextrin Catalyzed Synthesis of 2,4,5- Trisubstituted Imidazoles and 1,2-Disubstituted Benzimidazoles under Solvent Free Conditions and Evaluation of Their Antibacterial Study. RSC Adv. 2015, 5, 75533–75546. DOI: 10.1039/C5RA13891D.
  • Thimmaraju, N.; Shamshuddin, S. Z. M. Synthesis of 2,4,5-Trisubstituted Imidazoles, Quinoxalines and 1,5-Benzodiazepines over an Ecofriendly and Highly Efficient ZrO2–Al2O3 Catalyst. RSC Adv. 2016, 6, 60231–60243. DOI: 10.1039/C6RA13956F.
  • Bajpai, S.; Singh, S.; Srivastava, V. Nano Zirconia Catalyzed One-Pot Synthesis of Some Novel Substituted Imidazoles under Solvent-Free Conditions. RSC Adv. 2015, 5, 28163–28170. DOI: 10.1039/C4RA16211K.
  • Rinaudo, M. Chitin and Chitosan: properties and Applications. Prog. Polym. Sci. 2006, 31, 603–632. DOI: 10.1016/j.progpolymsci.2006.06.001.
  • Dash, M.; Chiellini, F.; Ottenbrite, R. M.; Chiellini, E. Chitosan-A Versatile Semi-Synthetic Polymer in Biomedical Applications. Prog. Polym. Sci. 2011, 36, 981–1014. DOI: 10.1016/j.progpolymsci.2011.02.001.
  • Bugnicourt, L.; Ladaviere, C. Interests of Chitosan Nanoparticles Ionically Cross-Linked with Tripolyphosphate for Biomedical Applications. Prog. Polym. Sci. 2016, 60, 1–17. DOI: 10.1016/j.progpolymsci.2016.06.002.
  • Shaabani, A.; Afshari, R.; Hooshmand, S. E. Crosslinked Chitosan Nanoparticle-Anchored Magnetic Multi-Wall Carbon Nanotubes: A Bio-Nanoreactor with Extremely High Activity toward Click-Multi-Component Reactions. New J. Chem. 2017, 41, 8469–8481. DOI: 10.1039/C7NJ01150D.
  • Maleki, A.; Paydar, R. Graphene Oxide-Chitosan Bionanocomposite: A Highly Efficient Nanocatalyst for the One-Pot Threecomponent Synthesis of Trisubstituted Imidazoles under Solvent-Free Conditions. RSC Adv. 2015, 5, 33177–33184. DOI: 10.1039/C5RA03355A.
  • Singh, H.; Rajput, J. K. Co(II) Anchored Glutaraldehyde Crosslinked Magnetic Chitosan Nanoparticles (MCS) for Synthesis of 2,4,5-Trisubstituted and 1,2,4,5-Tetrasubstituted Imidazoles. Appl. Organometal. Chem. 2018, 32, e3989. DOI: 10.1002/aoc.3989.
  • Khan, K.; Siddiqui, Z. N. An Efficient Synthesis of Tri- and Tetrasubstituted Imidazoles from Benzils Using Functionalized Chitosan as Biodegradable Solid Acid Catalyst. Ind. Eng. Chem. Res. 2015, 54, 6611–6618. DOI: 10.1021/acs.iecr.5b00511.
  • Trueba, M.; Trasatti, S. P. γ-Alumina as a Support for Catalysts: A Review of Fundamental Aspects. Eur. J. Inorg. Chem. 2005, 2005, 3393–3403. DOI: 10.1002/ejic.200500348.
  • Reddy, B. P.; Vijayakumar, V.; Arasu, M. V.; Al-Dhabi, N. A. γ-Alumina Nanoparticle Catalyzed Efficient Synthesis of Highly Substituted Imidazoles. Molecules 2015, 20, 19221–19235. DOI: 10.3390/molecules201019221.
  • Safari, J.; Akbari, Z.; Naseh, S. Nanocrystalline MgAl2O4 as an Efficient Catalyst for One-Pot Synthesis of Multisubstituted Imidazoles under Solvent-Free Conditions. J. Saudi Chem. Soc. 2016, 20, S250–S255. DOI: 10.1016/j.jscs.2012.10.012.
  • Javad, S.; Soheila, G. R.; Zahra, A. Sonochemical Synthesis of 1,2,4,5-Tetrasubstituted Imidazoles Using Nanocrystalline MgAl2O4 as an Effective Catalyst. J. Adv. Res. 2013, 4, 509–514. DOI: 10.1016/j.jare.2012.09.001.
  • Majid, M. H.; Khadijeh, B.; Hossein, A. O.; Shima, T. Synthesis of 2,4,5-Triaryl-Imidazoles Catalyzed by NiCl2·6H2O under Heterogeneous System. J. Mol. Catal. A Chem. 2007, 263, 279–281. DOI: 10.1016/j.molcata.2006.08.070.
  • Agarwal, S.; Kidwai, M.; Poddar, R.; Nath, M. A Facile and Green Approach for the One-Pot Multicomponent Synthesis of 2,4,5-Triaryl- and 1,2,4,5-Tetraarylimidazoles by Using Zinc-Proline Hybrid Material as a Catalyst. Chem. Select. 2017, 2, 10360–10364. DOI: 10.1002/slct.201702222.
  • Esmaeilpour, M.; Javidi, J.; Dehghani, F.; Zahmatkesh, S. One-Pot Synthesis of Multisubstituted Imidazoles Catalyzed by Dendrimer-PWAn Nanoparticles under Solvent-Free Conditions and Ultrasonic Irradiation. Res. Chem. Intermed. 2017, 43, 163–185. DOI: 10.1007/s11164-016-2613-9.
  • Chiappe, C.; Pieraccini, D. Ionic Liquids: Solvent Properties and Organic Reactivity. J. Phys. Org. Chem. 2005, 18, 275–297. DOI: 10.1002/poc.863.
  • Chowdhury, S.; Mohan, R. S.; Scott, J. L. Reactivity of Ionic Liquids. Tetrahedron 2007, 63, 2363–2389. DOI: 10.1016/j.tet.2006.11.001.
  • Akbari, A. Tri(1-Butyl-3-Methylimidazolium) Gadolinium Hexachloride, ([Bmim]3[GdCl6]), a Magnetic Ionic Liquid as a Green Salt and Reusable Catalyst for the Synthesis of Tetrasubstituted Imidazoles. Tetrahedron Lett. 2016, 57, 431–434. DOI: 10.1016/j.tetlet.2015.12.053.
  • Rajkumar, R.; Kamaraj, A.; Krishnasamy, K. Multicomponent, One-Pot Synthesis and Spectroscopic Studies of 1-(2-(2,4,5-Triphenyl-1H-Imidazol-1-yl)Ethyl)Piperazine Derivatives. J. Taibah Univ. Sci. 2015, 9, 498–507. DOI: 10.1016/j.jtusci.2014.12.001.
  • Kolvari, E.; Zolfagharinia, S. A Waste to Wealth Approach through Utilization of Nano-Ceramic Tile Waste as an Accessible and Inexpensive Solid Support to Produce a Heterogeneous Solid Acid Nanocatalyst: To Kill Three Birds with One Stone. RSC Adv. 2016, 6, 93963–93974. DOI: 10.1039/C6RA11923A.
  • Kiumars, B.; Mohammad, M. K.; Akbar, N. One-Pot Synthesis of 1,2,4,5-Tetrasubstituted and 2,4,5-Trisubstituted Imidazoles by Zinc Oxide as Efficient and Reusable Catalyst. Monatsh Chem. 2011, 142, 159–162. DOI: 10.1007/s00706-010-0428-8.
  • Kobra, N.; Maryam, H.; Maryam, L.; Zeinab, A. ZnO Nanorods: Efficient and Reusable Catalysts for the Synthesis of Substituted Imidazoles in Water. J. Taibah Univ. Sci. 2015, 9, 570–578. DOI: 10.1016/j.jtusci.2014.12.0071.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.