Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 49, 2019 - Issue 23
277
Views
17
CrossRef citations to date
0
Altmetric
ARTICLES

Highly efficient and green synthesis of diacylphloroglucinol over treated natural zeolite mordenite and the optimization using response surface method (RSM)

, ORCID Icon & ORCID Icon
Pages 3352-3372 | Received 16 Jul 2019, Published online: 18 Sep 2019

References

  • Pal Singh, I.; Bharate, S. B. Phloroglucinol Compounds of Natural Origin. Nat. Prod. Rep. 2006, 23, 558. DOI: 10.1039/b600518g.
  • Gong, L.; Tan, H.; Chen, F.; Li, T.; Zhu, J.; Jian, Q.; Yuan, D.; Xu, L.; Hu, W.; Jiang, Y. Novel Synthesized 2,4-DAPG Analogues: Antifungal Activity, Mechanism and Toxicology. Sci. Rep. 2016, 6, 1–9. DOI: 10.1038/srep32266.
  • Isnansetyo, A.; Cui, L.; Hiramatsu, K.; Kamei, Y. Antibacterial Activity of 2,4-Diacetylphloroglucinol Produced by Pseudomonas Sp. AMSN Isolated from a Marine Alga, against Vancomycin-Resistant Staphylococcus aureus. Int. J. Antimicrob. Agents. 2003, 22, 545–547. DOI: 10.1016/S0924-8579(03)00155-9.
  • Marchand, P. A.; Weller, D. M.; Bonsall, R. F. Convenient Synthesis of 2,4-Diacetylphloroglucinol, a Natural Antibiotic Involved in the Control of Take-All Disease of Wheat. J. Agric. Food Chem. 2000, 48, 1882–1887. DOI: 10.1021/jf9907135.
  • Yu, Q.; Ravu, R. R.; Jacob, M. R.; Khan, S. I.; Agarwal, A. K.; Yu, B. Y.; Li, X. C. Synthesis of Natural Acylphloroglucinol-Based Antifungal Compounds against Cryptococcus Species. J. Nat. Prod. 2016, 79, 2195–2201. DOI: 10.1021/acs.jnatprod.6b00224.
  • Chauthe, S. K.; Bharate, S. B.; Sabde, S.; Mitra, D.; Bhutani, K. K.; Singh, I. P. Biomimetic Synthesis and anti-HIV Activity of Dimeric Phloroglucinols. Bioorganic Med. Chem. 2010, 18, 2029–2036. DOI: 10.1016/j.bmc.2010.01.023.
  • Chauthe, S. K.; Bharate, S. B.; Periyasamy, G.; Khanna, A.; Bhutani, K. K.; Mishra, P. D.; Singh, I. P. One Pot Synthesis and Anticancer Activity of Dimeric Phloroglucinols. Bioorganic Med. Chem. Lett. 2012, 22, 2251–2256. DOI: 10.1016/j.bmcl.2012.01.089.
  • Fobofou, S. A. T.; Franke, K.; Sanna, G.; Porzel, A.; Bullita, E.; La Colla, P.; Wessjohann, L. A. Isolation and Anticancer, Anthelminthic, and Antiviral (HIV) Activity of Acylphloroglucinols, and Regioselective Synthesis of Empetrifranzinans from Hypericum Roeperianum. Bioorganic Med. Chem. 2015, 23, 6327–6334. DOI: 10.1016/j.bmc.2015.08.028.
  • Kusumaningsih, T.; Firdaus, M.; Wartono, M. W.; Artanti, A. N.; Handayani, D. S.; Putro, A. E. Ethyl-2-(3,5-Dihidroxyfenol): Phloroglucinol Derivatives as Potential Anticancer Material. IOP Conf. Ser. Mater. Sci. Eng. 2016, 107. DOI: 10.1088/1757-899X/107/1/012059.
  • Singh, I. P.; Sidana, J.; Bharate, S. B.; Foley, W. J. Phloroglucinol Compounds of Natural Origin: Synthetic Aspects. Nat. Prod. Rep. 2010, 27, 393. DOI: 10.1039/b914364p.
  • Hoseini, S. J.; Nasrabadi, H.; Azizi, M. Fe3O4 Nanoparticles as an Efficient and Magnetically Recoverable Catalyst for Friedel–Crafts Acylation Reaction in Solvent-Free Conditions. Synth. Commun. 2013, 43, 37–41. DOI: 10.1080/00397911.2012.663048.
  • Bai, G.; Han, J.; Zhang, H.; Liu, C.; Lan, X.; Tian, F.; Zhao, Z.; Jin, H. Friedel–Crafts Acylation of Anisole with Octanoic Acid over Acid Modified Zeolites. RSC Adv. 2014, 4, 27116–27121. DOI: 10.1039/C4RA02278E.
  • Duarte, M. O.; Lunardelli, S.; Kiekow, C. J.; Stein, A. C.; Müller, L.; Stolz, E.; Rates, S. M. K.; Gosmann, G. Phloroglucinol Derivatives Present an Antidepressant-like Effect in the Mice Tail Suspension Test (TST). Nat. Prod. Commun 2014, 9, 671–674. DOI: 10.1177/1934578X1400900522.
  • Yamazaki, T.; Makihara, M.; Komura, K. Zeolite Catalyzed Highly Selective Synthesis of 2-Methoxy-6-Acetylnaphthalene by Friedel-Crafts Acylation of 2-Methoxynaphthalene in Acetic Acid Reaction Media. Journal Mol. Catal. A Chem. 2017, 426, 170–176. DOI: 10.1016/j.molcata.2016.11.012.
  • Zakrzewski, J.; Karpińska, M.; Maliński, Z. A Large Scale Synthesis of a Natural Antibiotic, 2,4-Diacetylophloroglucinol (DAPG). A. Arch. Pharm. Chem. Life. Sci. 2007, 340, 103–106. DOI: 10.1002/ardp.200600139.
  • Nishimura, E.; Murakami, S.; Suzuki, K.; Amano, K.; Tanaka, R.; Shinada, T. Structure Determination of Monomeric Phloroglucinol Derivatives with a Cinnamoyl Group Isolated from Propolis of the Stingless. Asian J. Org. Chem. 2016, 5, 855–859. DOI: 10.1002/ajoc.201600106.
  • Wilkinson, M. C. Greener” Friedel-Crafts Acylations: A Metal- and Halogen-Free Methodology. Org. Lett. 2011, 13, 2232–2235. DOI: 10.1021/ol200482s.
  • Sartori, G.; Maggi, R. Use of Solid Catalysts in Friedel-Crafts Acylation Reactions. Chem. Rev. 2006, 106, 1077–1104. DOI: 10.1021/cr040695c.
  • Tachrim, Z.; Wang, L.; Murai, Y.; Yoshida, T.; Kurokawa, N.; Ohashi, F.; Hashidoko, Y.; Hashimoto, M. Trifluoromethanesulfonic Acid as Acylation Catalyst: Special Feature for C- and/or O-Acylation Reactions. Catalysts. 2017, 7, 40. DOI: 10.3390/catal7020040.
  • Posternak, A. G.; Garlyauskayte, R. Y.; Yagupolskii, L. M. A Novel Brønsted Acid Catalyst for Friedel-Crafts Acylation. Tetrahedron Lett. 2009, 50, 446–447. DOI: 10.1016/j.tetlet.2008.11.038.
  • Zhao, Z.; Li, Z.; Qiao, W.; Wang, G.; Cheng, L. An Efficient Method for the Alkylation of α-Methylnaphthalene with Various Alkylating Agents Using Methanesulfonic Acid as Novel Catalysts and Solvents. Catal. Lett. 2005, 102, 219–222. DOI: 10.1007/s10562-005-5859-1.
  • Tanaka, K.; Toda, F. Solvent-Free Organic Synthesis. Chem. Rev. 2000, 100, 1025–1074. DOI: 10.1021/cr940089p.
  • Firdaus, M. Thiol–Ene (Click) Reactions as Efficient Tools for Terpene Modification. Asian J. Org. Chem. 2017, 6, 1702–1714. DOI: 10.1002/ajoc.201700387.
  • Anastas, P.; Eghbali, N. Green Chemistry: Principles and Practice. Chem. Soc. Rev. 2010, 39, 301–312. DOI: 10.1039/B918763B.
  • Derouane, E. G.; Crehan, G.; Dillon, C. J.; Bethell, D.; He, H.; Derouane-Abd Hamid, S. B. Zeolite Catalysts as Solid Solvents in Fine Chemicals Synthesis: 2. Competitive Adsorption of the Reactants and Products in the Friedel-Crafts Acetylations of Anisole and Toluene. J. Catal. 2000, 194, 410–423. DOI: 10.1006/jcat.2000.2933.
  • Jeganathan, M.; Pitchumani, K. Solvent-Free Syntheses of 1,5-Benzodiazepines Using HY Zeolite as a Green Solid Acid Catalyst. ACS Sustainable Chem. Eng. 2014, 2, 1169–1176. DOI: 10.1021/sc400560v.
  • Poreddy, R.; Saravanamurugan, S.; Riisager, A. Highly Selective Liquid-Phase Benzylation of Anisole with Solid-Acid Zeolite Catalysts. Top. Catal. 2015, 58, 1053–1061. DOI: 10.1007/s11244-015-0473-y.
  • Zhang, J.; Wang, L.; Wang, G.; Chen, F.; Zhu, J.; Wang, C.; Bian, C.; Pan, S.; Xiao, F. S. Hierarchical Sn-Beta Zeolite Catalyst for the Conversion of Sugars to Alkyl Lactates. ACS Sustainable Chem. Eng. 2017, 5, 3123–3131. DOI: 10.1021/acssuschemeng.6b02881.
  • Mudududdla, R.; Jain, S. K.; Bharate, J. B.; Gupta, A. P.; Singh, B.; Vishwakarma, R. A.; Bharate, S. B. Ortho-Amidoalkylation of Phenols via Tandem One-Pot Approach Involving Oxazine Intermediate. J. Org. Chem. 2012, 77, 8821–8827. DOI: 10.1021/jo3017132.
  • Makihara, M.; Komura, K. A Novel Friedel-Crafts Acylation Reaction of Anisole for Production of 4-Methoxyacetophenone with High Selectivity and Sufficient Reusability of Mordenite Zeolite Catalyst. GSC. 2017, 07, 185–192. DOI: 10.4236/gsc.2017.73014.
  • Das, D.; Cheng, S. Friedel–Crafts Acylation of 2-Methoxynaphthalene over Zeolite Catalysts. Appl. Catal. A-Gen. 2000, 201, 159–168. DOI: 10.1016/S0926-860X(00)00438-5.
  • Kantam, M. L.; Ranganath, K. V. S.; Sateesh, M.; Kumar, K. B. S.; Choudary, B. M. Friedel-Crafts Acylation of Aromatics and Heteroaromatics by Beta Zeolite. J. Mol. Catal. A Chem. 2005, 225, 15–20. DOI: 10.1016/j.molcata.2004.08.018.
  • Bohström, Z.; Holmberg, K. Friedel-Crafts Acylation of 2-Methylindole with Acetic Anhydride Using Mesoporous HZSM-5. J. Mol. Catal. A Chem. 2013, 366, 64–73. DOI: 10.1016/j.molcata.2012.09.009.
  • Tanaka, K.; Kaupp, G. Solvent-Free Organic Synthesis; Wiley-VCH: Weinheim, 2003.
  • Kerton, F. M.; Marriott, R. Alternative Solvents for Green Chemistry; RSC Publishing: Cambridge, 2013.
  • Saxena, S. K.; Viswanadham, N.; Al-Muhtaseb, A. H. Ala'a, H. Enhanced Selective Oxidation of Benzyl Alcohol to Benzaldehyde on Mesopore Created Mordenite Catalyst. J. Porous Mater. 2016, 23, 1671–1678. DOI: 10.1007/s10934-016-0228-6.
  • Saxena, S. K.; Viswanadham, N. Applied Surface Science Enhanced Catalytic Properties of Mesoporous Mordenite for Benzylation of Benzene with Benzyl Alcohol. Appl. Surf. Sci. 2017, 392, 384–390. DOI: 10.1016/j.apsusc.2016.09.062.
  • Trisunaryanti, W.; Syoufian, A.; Purwono, S. Characterization and Modification of Indonesian Natural Zeolite for Hydrocracking of Waste Lubricant Oil into Liquid Fuel Fraction. J. Chem. Chem. Eng. 2013, 7, 175–180. DOI: 10.17265/1934-7375/2013.02.012.
  • Firdaus, M.; Prameswari, M. D. Synthesis of 2,2,4-Trimethyl-2,3-Dihydro-1H-1,5-Benzodiazepine Using Treated Natural Zeolite Catalyst. Bull. Chem. React. Eng. Catal. 2019, 14, 9. DOI: 10.9767/bcrec.14.1.2222.9-16.
  • Kusuma, R. I.; Hadinoto, J. P.; Ayucitra, A.; Soetaredjo, F. E.; Ismadji, S. Natural Zeolite from Pacitan Indonesia, as Catalyst Support for Transesterification of Palm Oil. Appl. Clay Sci 2013, 74, 121–126. DOI: 10.1016/j.clay.2012.04.021.
  • Idrus, A.; Titisari, A. D.; Sudiyo, R.; Soekrisno, A. R. Geology, Characterization, Quality Improvement and Recommended Utilization of Natural Zeolite (Zeolitic Tuff) Deposits from Gunung Kidul, Yogyakarta Special Teritory, Indonesia. 2nd IASME/WSEAS Int Conf Geol Seismolol. 2008, 21–25.
  • Cakicioglu-Ozkan, F.; Ulku, S. The Effect of HCl Treatment on Water Vapor Adsorption Characteristics of Clinoptilolite Rich Natural Zeolite. Microporous Mesoporous Mater. 2005, 77, 47–53. DOI: 10.1016/j.micromeso.2004.08.013.
  • Saltalı, K.; Sarı, A.; Aydın, M. Removal of Ammonium Ion from Aqueous Solution by Natural Turkish (Yıldızeli) Zeolite for Environmental Quality. J. Hazard. Mater. 2007, 141, 258–263. DOI: 10.1016/j.jhazmat.2006.06.124.
  • Hernawan; Wahono, S. K.; Maryana, R.; Pratiwi, D. Modification of Gunungkidul Natural Zeolite as Bioethanol Dehydrating Agents. Energy Procedia. 2015, 65, 116–120. DOI: 10.1016/j.egypro.2015.01.042.
  • Montalvo, S.; Guerrero, L.; Borja, R.; Sánchez, E.; Milán, Z.; Cortés, I.; Angeles de la la, R.; M. Application of Natural Zeolites in Anaerobic Digestion Processes: A Review. Appl. Clay Sci. 2012, 58, 125–133. DOI: 10.1016/j.clay.2012.01.013.
  • Viswanadham, N.; Dixit, L.; Gupta, J. K.; Garg, M. O. Effect of Acidity and Porosity Changes of Dealuminated Mordenites on N-Hexane Isomerization. J. Mol. Catal. A Chem. 2006, 258, 15–21. DOI: 10.1016/j.molcata.2006.04.067.
  • Trisunaryanti, W.; Emmanuel, I. Preparation, Characterization, Activity, Deactivation, and Regenaration Test of CoO-MoO/ZnO and CoO-MoO/ZnO-Activated Zeolit Catalyst for the Hydrogen Production from Fuel Oil. Indones. J. Chem. 2010, 9, 361–368. DOI: 10.22146/ijc.21499.
  • Nur, F.; Mohd, S.; Japri, N.; Ramli, Z.; Mahat, N. A. Reactivity of Mesoporous ZSM-5 Zeolite towards Friedel-Crafts Acylation of Anisole and Propionic Anhydride. Malay. J. Catal. 2017, 2, 62–66.
  • Chorkendorff, I.; Niemantsverdriet, J. W.; Niemantsverdriet, J. W.; Niemantsverdriet, J. W. Concepts of Modern Catalysis and Kinetics. Vol. 138; Wiley-Vch: Weinheim, 2003.
  • Khazaei, A.; Sarmasti, N.; Seyf, J. Y. Waste to Wealth: Conversion of Nano-Magnetic Eggshell (Fe3O4@ Eggshell) to Fe3O4@Ca(HSO4)2: Cheap, Green and Environment-Friendly Solid Acid Catalyst. Appl. Organometal. Chem. 2018, 32, e4308. DOI: 10.1002/aoc.4308.
  • Weissman, S. A.; Anderson, N. G. Design of Experiments (DoE) and Process Optimization. A Review of Recent Publications. Org. Process Res. Dev. 2015, 19, 1605–1633. DOI: 10.1021/op500169m.
  • Zhang, J.; Kirchhoff, E. W.; Zembower, D. E.; Jimenez, N.; Sen, P.; Xu, Z.; Flavin, M. T. Automated Process Research. An Example of Accelerated Optimization of the Friedel−Crafts Acylation Reaction, a Key Step for the Synthesis of anti-HIV (+)-Calanolide A. Org. Process Res. Dev. 2000, 4, 577–580. DOI: 10.1021/op0002038.
  • Alegría, A.; Fuentes, Á. L.; Arriba, D.; Morán, J. R.; Cuellar, J. Environmental Biodiesel Production Using 4-Dodecylbenzenesulfonic Acid as Catalyst. Applied Catal. B, Environ 2014, 160–161, 743–756. DOI: 10.1016/j.apcatb.2014.06.033.
  • Priya, S. S.; Bhanuchander, P.; Kumar, V. P.; Dumbre, D. K.; Periasamy, S. R.; Bhargava, S. K.; Lakshmi Kantam, M.; Chary, K. V. R. Platinum Supported on H-Mordenite: A Highly Efficient Catalyst for Selective Hydrogenolysis of Glycerol to 1,3-Propanediol. ACS Sustainable Chem. Eng. 2016, 4, 1212–1222. DOI: 10.1021/acssuschemeng.5b01272.
  • Zanjanchi, M. A.; Mohammadi, M. Estimation of Potential and Effective Brønsted Acid Site Concentrations in Acidic Mordenites by Conductometric Titration Method. J. Sci. I. R. Iran. 2001, 12, 133.
  • Korkuna, O.; Leboda, R.; Skubiszewska-Zie¸Ba, J.; Vrublevs’ka, T.; Gun’ko, V. M.; Ryczkowski, J. Structural and Physicochemical Properties of Natural Zeolites: Clinoptilolite and Mordenite. Microporous Mesoporous Mater 2006, 87, 243–254. DOI: 10.1016/j.micromeso.2005.08.002.
  • Sriningsih, W.; Saerodji, M. G.; Trisunaryanti, W.; Triyono; Armunanto, R.; Falah, I. I. Fuel Production from LDPE Plastic Waste over Natural Zeolite Supported Ni, Ni-Mo, Co and Co-Mo Metals. Procedia Environ. Sci. 2014, 20, 215–224. DOI: 10.1016/j.proenv.2014.03.028.
  • Ammar, M.; Jiang, S.; Ji, S. Heteropoly Acid Encapsulated into Zeolite Imidazolate Framework (ZIF-67) Cage as an Efficient Heterogeneous Catalyst for Friedel–Crafts Acylation. J. Solid State Chem. 2016, 233, 303–310. DOI: 10.1016/j.jssc.2015.11.014.
  • Bhuyan, D.; Saikia, L.; Kumar, D. Modified Montmorillonite Clay Catalyzed Regioselective Ring Opening of Epoxide with Amines and Alcohols under Solvent Free Conditions. Appl. Catal. A, Gen. 2014, 487, 195–201. DOI: 10.1016/j.apcata.2014.09.020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.