Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 9
569
Views
18
CrossRef citations to date
0
Altmetric
SYNTHETIC COMMUNICATIONS REVIEWS

A review on synthetic approaches of heterocycles via insertion-cyclization reaction

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1251-1285 | Received 22 Nov 2019, Published online: 20 Jan 2020

References

  • Katritzky, A. R. Handbook of Heterocyclic Chemistry; Pergamon Press: New York, 1985; pp 1–2.
  • Dahm, R. Hum. Genet. 2008, 122, 565–581. DOI: 10.1007/s00439-007-0433-0.
  • Watson, J. D.; Crick, F. H. Nature. 1953, 171, 737–738.
  • Roopan, S. M.; Khan, F. R. N. Chem. Papers. 2010, 64, 812–817. DOI: 10.2478/s11696-010-0058-y.
  • Madhumitha, G.; Roopan, S. M. J. Nanomater. 2013, 20, 1–12. DOI: 10.1155/2013/951858.
  • Sang-Bum, L.; Young-In, P.; Mi-Sook, D.; Young-Dae, G. Bioorg. Med. Chem. Lett. 2010, 20, 5900.
  • Sabry, N. M.; Mohamed, H. M.; Khattab, E. S. A. E. H.; Motlaq, S. S.; El-Agrody, A. M. Eur. J. Med. Chem. 2011, 46, 765–772. DOI: 10.1016/j.ejmech.2010.12.015.
  • Raj, R.; Singh, P.; Singh, P.; Gut, J.; Rosenthal, P. J.; Kumar, V. Eur. J. Med. Chem. 2013, 62, 590–596. DOI: 10.1016/j.ejmech.2013.01.032.
  • Sitônio, M. M.; Carvalho Júnior, C. H.; Campos, I. A.; Silva, J. B.; Lima, M. C.; Góes, A. J.; Maia, M. B.; Rolim Neto, P. J.; Silva, T. G. Inflamm. Res. 2013, 62, 107–113. DOI: 10.1007/s00011-012-0557-0.
  • Ghorbani-Vaghei, R.; Malaekehpoor, S. M. Tetrahedron Lett. 2012, 53, 4751–4753. DOI: 10.1016/j.tetlet.2012.06.125.
  • Rad-Moghadam, K.; Azimi, S. C. J. Mol. Catal. A. 2012, 363, 465. DOI: 10.1016/j.molcata.2012.07.026.
  • Gates, B. C.; Katzer, J. R.; Schuit, G. C. A. Chemistry of Catalytic Processes; McGraw Hill: New York, 1979.
  • Anderson, J. R.; Boudart, M. Catalysis, Science and Technology: Springer: Berlin, 1981.
  • Gates, B. C. Catalytic Chemistry; Wiley: New York, 1992.
  • Cole-Hamilton, D. Science. 2003, 299, 1702–1706. DOI: 10.1126/science.1081881.
  • Somorjai, G. A. Introduction to Surface Chemistry and Catalysis; Wiley: New York, 1994.
  • Thomas, J. M.; Thomas, W. J. Principles and Practice of Heterogeneous Catalysis; VCH: Weinheim, 1997.
  • Bowker, M. The Basis and Applications of Heterogeneous Catalysis; Oxford University Press: Oxford, 1998.
  • Campbell, I. M. Catalysis at Surfaces; Chapman & Hall: London, 1988.
  • Moulijn, J. A.; Van Leeuwen, P. N. W. M. Catalysis: An Integrated Approach to Homogeneous, Heterogeneous and Industrial Catalysis; Elsevier: Amsterdam, 1993.
  • Davis, J. M. J. Nanosci. Nanotechnol. 2007, 7, 402–409. DOI: 10.1166/jnn.2007.152.
  • Feynman, R. There’s Plenty of Room at the Bottom. In Miniaturization; Gilbert, H.D., Ed.; Reinhold: New York; pp 282–296.
  • Drexler, K. E. Engines of Creation: The Coming Era of Nanotechnology; Anchor Books: New York, 1986.
  • (a) Borm, P.; Muller-Schulte, D. Nanomedicine. 2006, 1, 235–249. DOI: 10.2217/17435889.1.2.235. (b) Brunner, T. J.; Wick, P.; Manser, P.; Spohn, P.; Grass, R. N.; Limbach, L. K.; Bruinink, A.; Stark, W. J. Environ. Sci. Technol. 2006, 40, 4374–4381. DOI: 10.1021/es052069i.
  • Guerra, F.; Attia, M.; Whitehead, D.; Alexis, F. Nanotechnology for Environmental Remediation: Materials and Applications. Molecules. 2008, 23, 1760. January 22,
  • Singh, N. A. Nanotechnology Innovations, Industrial Applications and Patents. Environ. Chem. 2017, 15, 185–191.
  • Fortunelli, A., Vajda, S. Editorial: Nanocatalysis. Catal. Sci. Technol. 2016, 6, 6763–6765. http://www.nanoscience.com/education/overview.html.
  • Astruc, D. Nanoparticles in Catalysis: From Historical Background to the State-of-the Art. In Nanoparticles and Catalysis; Astruc, D., Ed.; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2008, pp 1–48.
  • Thomas, J. M. Chem. Cat. Chem. 2010, 2, 127.
  • Cuenya, B. R. Thin Solid Film. 2010, 518, 3127. DOI: 10.1016/j.tsf.2010.01.018.
  • Sun, C. Q. Prog. Solid State Chem. 2007, 35, 1–159. DOI: 10.1016/j.progsolidstchem.2006.03.001.
  • Klabunde, K. J. Nanoscale Materials in Chemistry. In Introduction to Nanotechnology in Nanoscale Materials in Chemistry; Klabunde, K. J., Ed.; Wiley Interscience: New York, 2001, 1–23.
  • Campbell, C. T.; Parker, S. C.; Starr, D. E. Science. 2002, 298, 811–814. DOI: 10.1126/science.1075094.
  • Schmid, G. In Nanoparticles, from Theory to Applications; Schmid, G., Ed.; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2004, pp 1–3.
  • Schmid, G. In Metals, in Nanoscale Materials in Chemistry. Klabunde, K. J., Ed.; John Wiley & Sons, Inc.: Hoboken, USA, 2001, pp 15–59.
  • (a) Ma, B.; Wang, Y.; Peng, J.; Zhu, Q. J. Org. Chem. 2011, 76, 6362–6366. DOI: 10.1021/jo2007362.; (b) Wu, X.-F.; Anbarasan, P.; Neumann, H.; Beller, M. Angew. Chem. Int. Ed. 2010, 49, 7316–7319. DOI: 10.1002/anie.201003895.
  • (a) Tobisu, M.; Imoto, S.; Ito, S.; Chatani, N. J. Org. Chem. 2010, 75, 4835–4840. DOI: 10.1021/jo1009728.; (b) Park, S.; Shintani, R.; Hayashi, T. Chem. Lett. 2009, 38, 204–205. DOI: 10.1246/cl.2009.204.; (c) Zhang, W.-X.; Nishiura, M.; Hou, Z. Angew. Chem. Int. Ed. Engl. 2008, 47, 9700–9703. DOI: 10.1002/anie.200804306.
  • Fei, X.-D.; Ge, Z.-Y.; Tang, T.; Zhu, Y.-M.; Ji, S.-J. J. Org. Chem. 2012, 77, 10321–10328. DOI: 10.1021/jo302004u.
  • Soeta, T.; Fujinami, S.; Ukaji, Y. J. Org. Chem. 2012, 77, 9878–9883. DOI: 10.1021/jo301791m.
  • Nanjo, T.; Tsukano, C.; Takemoto, Y. Org. Lett. 2012, 14, 4270–4273. DOI: 10.1021/ol302035j.
  • Xu, S.; Huang, X.; Hong, X.; Xu, B. Org. Lett. 2012, 14, 4614–4617. DOI: 10.1021/ol302070t.
  • Qiu, G.; Liu, G.; Pu, S.; Wu, J. Chem. Commun. 2012, 48, 2903. DOI: 10.1039/c2cc18001d.
  • Peng, J.; Liu, L.; Hu, Z.; Huang, J.; Zhu, Q. Chem. Commun. (Camb.) Camb. 2012, 48, 3772–3774. DOI: 10.1039/c2cc30351e.
  • Qiu, G.; He, Y.; Wu, J. Chem. Commun. 2012, 48, 3836–3838 DOI: 10.1039/c2cc30928a.
  • Qiu, G.; Wu, J. Chem. Commun. Camb. 2012, 48, 6046–6048. DOI: 10.1039/c2cc32135a.
  • Hu, Z.; Liang, D.; Zhao, J.; Huang, J.; Zhu, Q. Chem. Commun. (Camb.). 2012, 48, 7371–7373. DOI: 10.1039/c2cc33435f.
  • Gyuris, M.; Madácsi, R.; Puskás, R. G.; Tóth, G. K.; Wölfling, J.; Kanizsai, I. Eur. J. Org. Chem. 2011, 2011, 848–851. DOI: 10.1002/ejoc.201001502.
  • Kysil, V.; Khvat, A.; Tsirulnikov, S.; Tkachenko, S.; Williams, C.; Churakova, M.; Ivachtchenko, A. Eur. J. Org. Chem. 2010, 2010, 1525–1543. DOI: 10.1002/ejoc.200901360.
  • Lygin, A. V.; de Meijere, A. Eur. J. Org. Chem. 2009, 2009, 5138–5141. DOI: 10.1002/ejoc.200900820.
  • Zhou, F.; Ding, K.; Cai, Q. Chemistry. 2011, 17, 12268–12271. DOI: 10.1002/chem.201102459.
  • Zhu, C.; Xie, W.; Falck, J. R. Chemistry. 2011, 17, 12591–12595. DOI: 10.1002/chem.201102475.
  • Baelen, G. V.; Kuijer, S.; Rycêk, L.; Sergeyev, S.; Janssen, E.; Kanter, F. J. J.; De; Maes, B. U. W.; Ruijter, E.; Orru, R. V. A. Chemistry. 2011, 17, 15039–15044. DOI: 10.1002/chem.201102468.
  • Vlaar, T.; Cioc, R. C.; Mampuys, P.; Maes, B. U. W.; Orru, R. V. A.; Ruijter, E. Angew. Chem. Int. Ed. 2012, 51, 13058–13061. DOI: 10.1002/anie.201207410.
  • Ji, F.; Lv, M. F.; Yi, W.-B.; Cai, C. Adv. Synth. Catal. 2013, 355, 3401–3406. DOI: 10.1002/adsc.201300650.
  • Onitsuka, K.; Suzuki, S.; Takahashi, S. Tetrahedron Lett. 2002, 43, 6197–6199. DOI: 10.1016/S0040-4039(02)01316-3.
  • (a) Schoenberg, A.; Bartoletti, I.; Heck, R. F. J. Org. Chem. 1974, 39, 3318–3326. DOI: 10.1021/jo00937a003.; (b) Schoenberg, A.; Heck, R. F. J. Org. Chem. 1974, 39, 3327–3331. DOI: 10.1021/jo00937a004.; (c) Schoenberg, A.; Heck, R. F. J. Am. Chem. Soc. 1974, 96, 7761–7764. DOI: 10.1021/ja00832a024.
  • (a) Torii, S.; Okumoto, H.; Xu, L. H. Tetrahedron Lett. 1991, 32, 237–240. DOI: 10.1016/0040-4039(91)80864-3.; (b) Kalinin, V. N.; Shostakovsky, M. V.; Ponomaryov, A. B. Tetrahedron Lett. 1990, 31, 4073–4076. DOI: 10.1016/S0040-4039(00)94503-9.; (c) Yang, Q.; Alper, H. J. Org. Chem. 2010, 75, 948–950. DOI: 10.1021/jo902210p.; (d) Ye, F.; Alper, H. J. Org. Chem. 2007, 72, 3218–3222. DOI: 10.1021/jo0624851.; (e) Kadnikov, D. V.; Larock, R. C. J. Org. Chem. 2004, 69, 6772–6780. DOI: 10.1021/jo049149+.; (f) Kadnikov, D. V.; Larock, R. C. J. Org. Chem. 2003, 68, 9423–9432. DOI: 10.1021/jo0350763.; (g) Grigg, R.; Liu, A.; Shaw, D.; Suganthan, S.; Woodall, D. E.; Yoganathan, G. Tetrahedron Lett. 2000, 41, 7125–7128. DOI: 10.1016/S0040-4039(00)01176-X.; (h) Xiao, W.-J.; Alper, H. J. Org. Chem. 1999, 64, 9646–9652. DOI: 10.1021/jo9913098.; (i) Larksarp, C.; Alper, H. J. Org. Chem. 1999, 64, 9194–9200. DOI: 10.1021/jo991256u.; (j) Okuro, K.; Alper, H. J. Org. Chem. 1997, 62, 1566–1567. DOI: 10.1021/jo962283c.
  • Cao, H.; McNamee, L.; Alper, H. Org. Lett. 2008, 10, 5281–5284. DOI: 10.1021/ol8021403.
  • Abbiati, G.; Arcadi, A.; Canevari, V.; Capezzuto, L.; Rossi, E. J. Org. Chem. 2005, 70, 6454–6460. DOI: 10.1021/jo050882q.
  • (a) Majumdar, K. C.; Samanta, S.; Sinha, B. Synthesis. 2012, 44, 817–847. DOI: 10.1055/s-0031-1289734.; (b) Cacchi, S.; Fabrizi, G. Chem. Rev. 2011, 111, PR215–PR283. DOI: 10.1021/cr100403z.; (c) Zeni, G.; Larock, R. C. Chem. Rev. 2006, 106, 4644–4680. DOI: 10.1021/cr0683966.
  • (a) Arcadi, A.; Cacchi, S.; Carnicelli, V.; Marinelli, F. Tetrahedron. 1994, 50, 437–452. DOI: 10.1016/S0040-4020(01)80766-3.; (b) Arcadi, A.; Cacchi, S.; Marinelli, F. Tetrahedron Lett. 1992, 33, 3915.
  • Chaplin, J. H.; Flynn, B. L. Chem. Commun. 2001, 1594–1595. DOI: 10.1039/b104624c.
  • Markina, N. A.; Chen, Y.; Larock, R. C. Tetrahedron. 2013, 69, 2701–2713. DOI: 10.1016/j.tet.2013.02.003.
  • (a) Ackermann, L. Org. Lett. 2005, 7, 439–442. DOI: 10.1021/ol047649j.; (b) Kaspar, L. T.; Ackermann, L. Tetrahedron. 2005, 61, 11311–11316. DOI: 10.1016/j.tet.2005.09.095.
  • Liang, Y.; Meng, T.; Zhang, H.-J.; Xi, Z. Synlett. 2011, 911. DOI: 10.1055/s-0030-1259699.
  • (a) Dell’Acqua, M.; Facoetti, D.; Abbiati, G.; Rossi, E. Tetrahedron. 2011, 67, 1552. DOI: 10.1016/j.tet.2010.12.056.; (b) Dell’Acqua, M.; Abbiati, G.; Rossi, E. Synlett. 2010, 17, 2672. DOI: 10.1055/s-0030-1258571.; (c) Bossharth, E.; Desbordes, P.; Monteiro, N.; Balme, G. Org. Lett. 2003, 5, 2441–2444. DOI: 10.1021/ol034644y.; (d) Shekarrao, K.; Nath, D.; Kaishap, P. P.; Gogoi, S.; Boruah, R. C. Steroids. 2013, 78, 1126–1133. DOI: 10.1016/j.steroids.2013.08.002.
  • Huma, H. Z. S.; Halder, R.; Kalra, S. S.; Das, J.; Iqbal, J. Tetrahedron Lett. 2002, 43, 6485. DOI: 10.1016/S0040-4039(02)01240-6.
  • Xiao, F.; Chen, Y.; Liu, Y.; Wang, J. Tetrahedron. 2008, 64, 2755–2761. DOI: 10.1016/j.tet.2008.01.046.
  • Cao, K.; Zhang, F.-M.; Tu, Y.-Q.; Zhang, X.-T.; Fan, C.-A. Chemistry. 2009, 15, 6332–6334. DOI: 10.1002/chem.200900875.
  • Zhang, M.; Wang, T.; Xiong, B.; Yan, F.; Wang, X.; Ding, Y.; Song, Q. Heterocycles. 2012, 85, 639. DOI: 10.3987/COM-12-12433.
  • Yao, C.; Qin, B.; Zhang, H.; Lu, J.; Wang, D.; Tu, S. RSC Adv. 2012, 2, 3759. DOI: 10.1039/c2ra20172k.
  • Gaddam, V.; Ramesh, S.; Nagarajan, R. Tetrahedron. 2010, 66, 4218–4222. DOI: 10.1016/j.tet.2010.03.095.
  • Chen, X.-L.; Zhang, J.-M.; Shang, W.-L.; Lu, B.-Q.; Jin, J.-A. J. Fluor. Chem. 2012, 133, 139–145. DOI: 10.1016/j.jfluchem.2011.08.005.
  • Liu, P.; Pan, Y.-M.; Xu, Y.-L.; Wang, H.-S. Org. Biomol. Chem. 2012, 10, 4696–4698. DOI: 10.1039/c2ob25487e.
  • Ghosh, R.; Mishra, S. Mechanistic Studies on a New Catalyst System (CuI-NaHSO4×SiO2) Leading to the One-Pot Synthesis of Imidazo[1,2-a]pyridines from Reactions of 2-Aminopyridines, Aldehydes, and Terminal Alkynes. Synthesis. 2011, 3463–3470. DOI: 10.1055/s-0030-1260255.
  • Guchhait, S. K.; Chandgude, A. L.; Priyadarshani, G. J. Org. Chem. 2012, 77, 4438–4444. DOI: 10.1021/jo3003024.
  • Yan, B.; Liu, Y. Org. Lett. 2007, 9, 4323–4326. DOI: 10.1021/ol701886e.
  • Bai, Y.; Zeng, J.; Ma, J.; Gorityala, B. K.; Liu, X.-W. J. Comb. Chem. 2010, 12, 696–699. DOI: 10.1021/cc100086h.
  • Bobade, VS.; Patil, S.; Patil, S. Synthesis of Aminoindolizine and Quinoline Derivatives via Fe(acac)3/TBAOH-Catalyzed Sequential Cross-Coupling-Cycloisomerization Reactions. Synlett. 2011, 2379–2383. DOI: 10.1055/s-0030-1260305.
  • Mishra, S.; Naskar, B.; Ghosh, R. Tetrahedron Lett. 2012, 53, 5483–5487. DOI: 10.1016/j.tetlet.2012.07.113.
  • Dighe, S. U.; Hutait, S.; Batra, S. ACS Comb Sci. 2012, 14, 665–672. DOI: 10.1021/co300123y.
  • Li, C.-J.; Nguyen, R.-V. Efficient Synthesis of Dihydrobenzofurans via a Multicomponent Coupling of Salicylaldehydes, Amines, and Alkynes. Synlett. 2008, 1897–1901. DOI: 10.1055/s-2008-1078573.
  • Sakai, N.; Uchida, N.; Konakahara, T. Tetrahedron Lett. 2008, 49, 3437–3440. DOI: 10.1016/j.tetlet.2008.03.111.
  • Li, H.; Liu, J.; Yan, B.; Li, Y. Tetrahedron Lett. 2009, 50, 2353–2357. DOI: 10.1016/j.tetlet.2009.02.204.
  • Yu, M.; Wang, Y.; Li, C.-J.; Yao, H. Tetrahedron Lett 2009, 50, 6791–6794. DOI: 10.1016/j.tetlet.2009.09.095.
  • Chernyak, D.; Chernyak, N.; Gevorgyan, V. Adv. Synth. Catal. 2010, 352, 961–966. DOI: 10.1002/adsc.201000015.
  • Bonfield, E. R.; Li, C.-J. Adv. Synth. Catal. 2008, 350, 370–374. DOI: 10.1002/adsc.200700500.
  • Fokin, V. V.; Matyjaszewski, K. Organic Chemistry – Breakthroughs and Perspectives; Wiley-VCH Verlag GmbH: Weinheim, 2012, pp 247.
  • Liang, L.; Astruc, D. Coord. Chem. Rev. 2011, 255, 2933–2945. DOI: 10.1016/j.ccr.2011.06.028.
  • Ackermann, L.; Potukuchi, H. K.; Landsberg, D.; Vicente, R. Org. Lett. 2008, 10, 3081–3084. DOI: 10.1021/ol801078r.
  • Kamijo, S.; Jin, T.; Huo, Z.; Yamamoto, Y. Tetrahedron Lett. 2002, 43, 9707–9710. DOI: 10.1016/S0040-4039(02)02206-2.
  • Kamijo, S.; Jin, T.; Huo, Z.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 7786–7787. DOI: 10.1021/ja034191s.
  • Huisgen, R.; De March, P. J. Am. Chem. Soc. 1982, 104, 4953–4954. DOI: 10.1021/ja00382a039.
  • DeAngelis, A.; Taylor, M. T.; Fox, J. M. J. Am. Chem. Soc. 2009, 131, 1101–1105. DOI: 10.1021/ja807184r.
  • Galliford, C. V.; Scheidt, K. A. J. Org. Chem. 2007, 72, 1811–1813. DOI: 10.1021/jo0624086.
  • Li, G.-Y.; Chen, J.; Yu, W.-Y.; Hong, W.; Che, C.-M. Org. Lett. 2003, 5, 2153–2156. DOI: 10.1021/ol034614v.
  • Lee, H.-W.; Kwong, F.-Y. Eur. J. Org. Chem. 2010, 2010, 789–811. DOI: 10.1002/ejoc.200900892.
  • Chopade, P. R.; Louie, J. Adv. Synth. Catal. 2006, 348, 2307–2327. DOI: 10.1002/adsc.200600325.
  • Varela, J. A.; Saá, C. Chem. Rev. 2003, 103, 3787–3801. DOI: 10.1021/cr030677f.
  • Brummond, K. M.; Kent, J. L. Tetrahedron. 2000, 56, 3263–3283. DOI: 10.1016/S0040-4020(00)00148-4.
  • Odom, A. L.; McDaniel, T. J. Acc. Chem. Res. 2015, 48, 2822–2833. DOI: 10.1021/acs.accounts.5b00280.
  • Banerjee, S.; Shi, Y.; Cao, C.; Odom, A. L. J. Organomet. Chem. 2005, 690, 5066–5077. DOI: 10.1016/j.jorganchem.2005.03.025.
  • Majumder, S.; Gipson, K. R.; Staples, R. J.; Odom, A. L. Adv. Synth. Catal. 2009, 351, 2013. DOI: 10.1002/adsc.200900293.
  • Dissanayake, A. A.; Odom, A. L. Tetrahedron. 2012, 68, 807–812. DOI: 10.1016/j.tet.2011.11.043.
  • Majumder, S.; Odom, A. L. Tetrahedron. 2010, 66, 3152–3158. DOI: 10.1016/j.tet.2010.02.066.
  • Majumder, S.; Gipson, K. R.; Odom, A. L. Org. Lett. 2009, 11, 4720–4723. DOI: 10.1021/ol901855b.
  • Barnea, E.; Majumder, S.; Staples, R. J.; Odom, A. L. Organometallics. 2009, 28, 3876–3881. DOI: 10.1021/om9001928.
  • Jayakumar, J.; Parthasarathy, K.; Cheng, C.-H. Angew. Chem. Int. Ed. Engl. 2012, 51, 197–200. DOI: 10.1002/anie.201105755.
  • Zheng, L.; Ju, J.; Bin, Y.; Hua, R. J. Org. Chem. 2012, 77, 5794–5800. DOI: 10.1021/jo3010414.
  • Sim, Y.-K.; Lee, H.; Park, J.-W.; Kim, D.-S.; Jun, C.-H. Chem. Commun. Camb. 2012, 48, 11787–11789. DOI: 10.1039/c2cc36956g.
  • Ji, X.; Huang, H.; Li, Y.; Chen, H.; Jiang, H. Angew. Chem. Int. Ed. Engl. 2012, 51, 7292–7296. DOI: 10.1002/anie.201202412.
  • Aftab, T.; Grigg, R.; Ladlow, M.; Sridharan, V.; Thornton-Pett, M. Chem. Commun. 2002, 1754–1755. DOI: 10.1039/B205069B.
  • Grigg, R.; Savic, V.; Sridharan, V.; Terrier, C. Tetrahedron. 2002, 58, 8613–8620. DOI: 10.1016/S0040-4020(02)00763-9.
  • Grigg, R.; Nurnabi, M.; Sarkar, M. R. A. Tetrahedron. 2004, 60, 3359–3373. DOI: 10.1016/j.tet.2004.02.049.
  • Shu, W.; Yu, Q.; Jia, G.; Ma, S. Chemistry. 2011, 17, 4720–4723. DOI: 10.1002/chem.201003611.
  • Ma, S.; Jiao, N. Angew. Chem. Int. Ed. Engl. 2002, 41, 4737–4740. DOI: 10.1002/anie.200290033.
  • Uemura, K.; Shiraishi, D.; Noziri, M.; Inoue, Y. BCSJ. 1999, 72, 1063–1069. DOI: 10.1246/bcsj.72.1063.
  • Arndtsen, B. A. Chemistry. 2009, 15, 302–313. DOI: 10.1002/chem.200800767.
  • Dhawan, R.; Dghaym, R. D.; Arndtsen, B. A. J. Am. Chem. Soc. 2003, 125, 1474–1475. DOI: 10.1021/ja027474d.
  • Dhawan, R.; Arndtsen, B. A. J. Am. Chem. Soc. 2004, 126, 468–469. DOI: 10.1021/ja039152v.
  • Lu, Y.; Arndtsen, B. A. Angew. Chem. Int. Ed. Engl. 2008, 47, 5430–5433. DOI: 10.1002/anie.200801385.
  • Siamaki, A. R.; Arndtsen, B. A. J. Am. Chem. Soc. 2006, 128, 6050–6051. DOI: 10.1021/ja060705m.
  • Worrall, K.; Xu, B.; Bontemps, S.; Arndtsen, B. A. J. Org. Chem. 2011, 76, 170–180. DOI: 10.1021/jo101858d.
  • Dghaym, R. D.; Dhawan, R.; Arndtsen, B. A. Angew. Chem. Int. Ed. Engl. 2001, 40, 3228–3230. DOI: 10.1002/1521-3773(20010903)40:17<3228::AID-ANIE3228>3.0.CO;2-Q.
  • Dhawan, R.; Dghaym, R. D.; St. Cyr, D. J.; Arndtsen, B. A. Org. Lett. 2006, 8, 3927–3930. DOI: 10.1021/ol061308j.
  • Bontemps, S.; Quesnel, J. S.; Worrall, K.; Arndtsen, B. A. Angew. Chem. Int. Ed. Engl. 2011, 50, 8948–8951. DOI: 10.1002/anie.201103885.
  • Pilgrim, B. S.; Gatland, A. E.; McTernan, C. T.; Procopiou, P. A.; Donohoe, T. J. Org. Lett. 2013, 15, 6190–6193. DOI: 10.1021/ol4030309.
  • (a) Grigg, R.; Sridharan, V.; Terrier, C. Tetrahedron Lett. 1996, 37, 4221–4224. DOI: 10.1016/0040-4039(96)00801-5.; (b) Grigg, R.; Savic, V. Tetrahedron Lett. 1996, 37, 6565–6568. DOI: 10.1016/0040-4039(96)01400-1.
  • Grigg, R.; Mariani, E.; Sridharan, V. Tetrahedron Lett. 2001, 42, 8677–8680. DOI: 10.1016/S0040-4039(01)01811-1.
  • Dahl, T.; Tornøe, C. W.; Bang-Andersen, B.; Nielsen, P.; Jørgensen, M. Angew. Chem. Int. Ed. Engl. 2008, 47, 1726–1728. DOI: 10.1002/anie.200705209.
  • Tsoung, J.; Panteleev, J.; Tesch, M.; Lautens, M. Org. Lett. 2014, 16, 110–113. DOI: 10.1021/ol4030925.
  • Shen, W.-B.; Sun, Q.; Li, L.; Liu, X.; Zhou, B.; Yan, J.-Z.; Lu, X.; Ye, L.-W. Nat. Commun. 2017, 8, 1748. DOI: 10.1038/s41467-017-01853-1.
  • Zhang, B.; Studer, A. Chem. Soc. Rev. 2015, 44, 3505–3521. DOI: 10.1039/C5CS00083A.
  • Ibarra, I. A.; Islas-Jácome, A.; González-Zamora, E. Org. Biomol. Chem. 2018, 16, 1402–1418. DOI: 10.1039/C7OB02305G.
  • Suresh, A.; Baiju, T. V.; Kumar, T.; Namboothiri, I. N. N. J. Org. Chem. 2019, 84, 3158–3168. DOI: 10.1021/acs.joc.8b03039.
  • (a) Kaur, N. Inorg. Chem. Commun. 2014, 49, 86–119. DOI: 10.1016/j.inoche.2014.09.024.; (b) Kaur, N.; Kishore, D. Synth. Commun 2014, 44, 1173–1211. DOI: 10.1080/00397911.2012.760129.; (c) Kaur, N.; Kishore, D. Synth. Commun. 2014, 44, 1019–1042. DOI: 10.1080/00397911.2012.760131.; (d) Kaur, N. Synth. Commun. 2014, 44, 3483–3508. DOI: 10.1080/00397911.2013.800213.; (e) Kaur, N. Synth. Commun. 2014, 44, 3509–3537. DOI: 10.1080/00397911.2013.800214.; (f) Kaur, N. Synth. Commun. 2014, 44, 3229–3247. DOI: 10.1080/00397911.2013.798666.; (g) Kaur, N. Synth. Commun. 2018, 48, 1235–1258. DOI: 10.1080/00397911.2018.1434894.; (h) Kaur, N. Synth. Commun. 2018, 48, 1259–1284. DOI: 10.1080/00397911.2018.1443218.; (i) Kaur, N. J. Sulfur Chem. 2018, 39, 544–577. DOI: 10.1080/17415993.2018.1457673.; (j) Yan, S. Cao, S.; Sun, J. Org. Biomol. Chem. 2017, 15, 5272–5274. DOI: 10.1039/c7ob01091e.;
  • (a) Kaur, N. J. Iran. Chem. Soc. 2015, 12, 9–45. DOI: 10.1007/s13738-014-0451-5.; (b) Kaur, N. Synth. Commun. 2015, 45, 1269–1300. DOI: 10.1080/00397911.2013.827725.; (c) Kaur, N. Synth. Commun. 2015, 45, 1379–1410. DOI: 10.1080/00397911.2013.828078.; (d) Kaur, N.; Kishore, D. Synth. Commun. 2014, 44, 1375–1413; (e) Kaur, N. Synth. Commun. 2014, 45, 1–34; (f) Kaur, N. Synth. Commun 2014, 45, 35–69; (g) Chemler, S. R.; Beilstein, J. Beilstein J. Org. Chem. 2015, 11, 2252–2253. DOI: 10.3762/bjoc.11.244.
  • (a) Kaur, N. Syn. Commun. 2015, 45, 789–823. DOI: 10.1080/00397911.2013.824984.; (b) Kaur, N. Synth. Commun. 2015, 45, 151–172. DOI: 10.1080/00397911.2013.813550.; (c) Kaur, N. Synth. Commun. 2015, 45, 173–201. DOI: 10.1080/00397911.2013.816734.; (d) Kaur, N. Synth. Commun. 2015, 45, 273–299. DOI: 10.1080/00397911.2013.816735.; (e) Kaur, N. Synth. Commun. 2015, 45, 300–330. DOI: 10.1080/00397911.2013.816736.; (f) Kaur, N.; Kishore, D. Synth. Commun. 2014, 44, 1375–1413. DOI: 10.1080/00397911.2013.772202.; (g) Palchak, Z. L.; Nguyen, P. T.; Larsen, C. H.; Beilstein, J. Beilstein J. Org. Chem. 2015, 11, 1425. DOI: 10.3762/bjoc.11.154.
  • Han, J.; Xu, B.; Hammond, G. B. J. Am. Chem. Soc. 2010, 132, 916–917. DOI: 10.1021/ja908883n.
  • Xu, T.; Yang, Q.; Li, D.; Dong, J.; Yu, Z.; Li, Y. Chem. Eur. J. 2010, 16, 9264–9272. DOI: 10.1002/chem.201000686.
  • (a) Kaur, N. J. Heterocyclic Chem. 2015, 52, 953–973. DOI: 10.1002/jhet.2129.; (b) Kaur, N. Cos. 2017, 14, 531–556. DOI: 10.2174/1570179413666161021104941.; (c) Kaur, N. Curr. Org. Synth. 2017, 14, 972.; (d) Kaur, N. MROC. 2017, 14, 3–23. DOI: 10.2174/1570193X13666161019120050.; (e) Kaur, N. Synth. React. Inorg. Met. Org. Nano-Met. Chem. 2016, 46, 983–1020. DOI: 10.1080/15533174.2014.989620.; (f) Kaur, N. Inorg. Nano-Met. Chem. 2017, 47, 163–187. DOI: 10.1080/15533174.2015.1068809.; (g) Orru, R. V. A.; de Greef, M. Synthesis. 2003, 10, 1471. DOI: 10.1055/s-2003-40507.; (h) Kaur, N. Synth. Commun. 2018, 48, 1551–1587. DOI: 10.1080/00397911.2018.1457698.; (i) Kaur, N. Synth. Commun. 2018, 48, 1588–1613. DOI: 10.1080/00397911.2018.1458243.; (j) Kaur, N. Synth. Commun. 2018, 48, 1715–1738. DOI: 10.1080/00397911.2018.1460671.
  • Kaur, N.; Ahlawat, N.; Bhardwaj, P.; Verma, Y.; Grewal, P.; Jangid, N. K. Syn. Commun. 2019, 1–43.
  • Pandey, A.; Chundawat, N. S.; Chauhan, N. P. S. Advanced Functional Polymers for Biomedical Applications; Elsevier-Amsterdam: Amsterdam, 2019, pp 167–189.
  • Chauhan, N. P. S.; Chundawat, N. S. Inorganic and Organometallic Polymers; Walter de Gruyter GmbH & Co KG: Berlin, 2019. ISBN 978-1-5015-1866-9.
  • Mozafari, M.; Chauhan, N. P. S. Advanced Functional Polymers for Biomedical Applications; Elsevier-Amsterdam: Amsterdam, 2019. ISBN 9780128163498, 9780128166048.
  • Kanbayashi, N.; Okamura, T. A.; Onitsuka, K. J. Am. Chem. Soc. 2019, 141, 15307–15317. DOI: 10.1021/jacs.9b07431.
  • Kataoka, Y.; Kanbayashi, N.; Okamura, T.; Onitsuka, K. Polym. Chem. 2018, 9, 2797–2804. DOI: 10.1039/C8PY00381E.
  • Mishra, S.; Arora, S.; Nagpal, R.; Singh Chauhan, S. M. J. Chem. Sci. 2014, 126, 1729–1736. DOI: 10.1007/s12039-014-0731-8.
  • Zhang, Z.; Tang, X.; Dolbier, W. R. Org. Lett. 2015, 17, 4401–4403. DOI: 10.1021/acs.orglett.5b02061.
  • Chauhan, N. P. S.; Mozafari, M.; Chundawat, N. S.; Meghwal, K.; Ameta, R.; Ameta, S. C. J. Ind. Eng. Chem. 2016, 36, 13–29. DOI: 10.1016/j.jiec.2016.03.003.
  • Ishida, N.; Shimamoto, Y.; Murakami, M. Angew. Chem. Int. Ed. 2012, 51, 11750–11752. DOI: 10.1002/anie.201206166.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.