Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 9
428
Views
29
CrossRef citations to date
0
Altmetric
SYNTHETIC COMMUNICATIONS REVIEWS

Photochemical C–N bond forming reactions for the synthesis of five-membered fused N-heterocycles

, , , , &
Pages 1286-1334 | Received 28 Oct 2019, Published online: 23 Jan 2020

References

  • (a) Balaban, A. T.; Oniciu, D. C.; Katritzky, A. R. Aromaticity as a Cornerstone of Heterocyclic Chemistry. Chem. Rev. 2004, 104, 2777–2812. DOI: 10.1021/cr0306790. (b) Kaur, N.; Bhardwaj, P.; Devi, M.; Verma, Y.; Grewal, P. Photochemical Reactions in Five and Six-Membered Polyheterocycles Synthesis. Synth. Commun. 2019, 49, 2281–2318. DOI: 10.1080/00397911.2019.1622732.
  • (a) Martins, M.; Cunico, W.; Pereira, C.; Sinhorin, A.; Flores, A.; Bonacorso, H.; Zanatta, N. 4-Alkoxy-1, 1, 1-Trichloro-3-Alken-2-Ones: Preparation and Applications in Heterocyclic Synthesis. COS. 2004, 1, 391–403. DOI: 10.2174/1570179043366611. (b) Kaur, N. Synthesis of Six and Seven-Membered Heterocycles under Ultrasound Irradiation. Synth. Commun. 2018, 48, 1235–1258. DOI: 10.1080/00397911.2018.1434894. (c) Kaur, N. Photochemical Reactions as Key Steps in Five-Membered N-Heterocycles Synthesis. Synth. Commun. 2018, 48, 1259–1284. DOI: 10.1080/00397911.2018.1443218. (d) Kaur, N. Solid-Phase Synthesis of Sulfur Containing Heterocycles. J. Sulfur Chem. 2018, 39, 544–577. DOI: 10.1080/17415993.2018.1457673. (e) Kaur, N.; Verma, Y.; Grewal, P.; Bhardwaj, P.; Devi, M. Application of Titanium Catalysts for the Syntheses of Heterocycles. Synth. Commun. 2019, 49, 1847–1894. DOI: 10.1080/00397911.2019.1606922. (f) Kaur, N. Ionic Liquid: An Efficient and Recyclable Medium for the Synthesis of Fused Six-Membered Oxygen Heterocycles. Synth. Commun. 2019, 49, 1679–1707. DOI: 10.1080/00397911.2019.1568149. (g) Kaur, N. Multiple Nitrogen-Containing Heterocycles: Metal and Non-Metal Assisted Synthesis. Synth. Commun. 2019, 49, 1633–1658. DOI: 10.1080/00397911.2018.1542497. (h) Kaur, N.; Grewal, P.; Bhardwaj, P.; Devi, M.; Verma, Y. Nickel-Catalyzed Synthesis of Five-Membered Heterocycles. Synth. Commun. 2019, 49, 1543–1577. DOI: 10.1080/00397911.2019.1594306. (i) Kaur, N. Gold and Silver Assisted Synthesis of Five-Membered Oxygen and Nitrogen Containing Heterocycles. Synth. Commun. 2019, 49, 1459–1485. DOI: 10.1080/00397911.2019.1575423. (j) Kaur, N. Synthesis of Six- and Seven-Membered and Larger Heterocylces Using Au and Ag Catalysts. Inorganic Nano-Metal Chem. 2018, 48, 541–568. DOI: 10.1080/24701556.2019.1567544.
  • (a) Druzhinin, S. V.; Balenkova, E. S.; Nenajdenko, V. G. Recent Advances in the Chemistry of α,β-Unsaturated Trifluoromethylketones. Tetrahedron 2007, 63, 7753–7808. DOI: 10.1016/j.tet.2007.04.029. (b) Kaur, N. Applications of Palladium Dibenzylideneacetone as Catalyst in the Synthesis of Five-Membered N-Heterocycles. Synth. Commun. 2019, 49, 1205–1230. DOI: 10.1080/00397911.2018.1540048. (c) Kaur, N. Copper Catalyzed Synthesis of Seven and Higher-Membered Heterocycles. Synth. Commun. 2019, 49, 879–916. DOI: 10.1080/00397911.2018.1543780. (d) Kaur, N. Ionic Liquid Assisted Synthesis of S-Heterocycles. Phosphorus, Sulfur, and Silicon and the Related Elements 2019, 194, 165–185. DOI: 10.1080/10426507.2018.1539492. (e) Kaur, N. Nickel Catalysis: Six Membered Heterocycle Syntheses. Synth. Commun. 2019, 49, 1103–1133. DOI: 10.1080/00397911.2019.1568499. (f) Kaur, N. Seven-Membered N-Heterocycles: Metal and Non-Metal Assisted Synthesis. Synth. Commun. 2019, 49, 987–1030. DOI: 10.1080/00397911.2019.1574351. (g) Kaur, N.; Bhardwaj, P.; Devi, M.; Verma, Y.; Grewal, P. Synthesis of Five-Membered O,N-Heterocycles Using Metal and Non-Metal. Synth. Commun. 2019, 49, 1345–1384. DOI: 10.1080/00397911.2019.1594308. (h) Kaur, N. Synthetic Routes to Seven and Higher Membered S-Heterocycles by Use of Metal and Nonmetal Catalyzed Reactions. Phosphorus, Sulfur, and Silicon Rel. Elem. 2019, 194, 186–209. DOI: 10.1080/10426507.2018.1539493. (i) Kaur, N. Synthesis of Six-Membered N-Heterocycles Using Ruthenium Catalysts. Catal. Lett. 2019, 14, 1513–1539. DOI: 10.1007/s10562-019-02746-2.
  • (a) Kaur, N. Palladium-Catalyzed Approach to the Synthesis of Five-Membered O-Heterocycles. Inorg. Chem. Commun. 2014, 49, 86–119. DOI: 10.1016/j.inoche.2014.09.024. (b) Kaur, N.; Kishore, D. Nitrogen-Containing Six-Membered Heterocycles: Solid-Phase Synthesis. Synth. Commun. 2014, 44, 1173–1211. DOI: 10.1080/00397911.2012.760129. (c) Kaur, N.; Kishore, D. Solid-Phase Synthetic Approach toward the Synthesis of Oxygen Containing Heterocycles. Synth. Commun. 2014, 44, 1019–1042. DOI: 10.1080/00397911.2012.760131. (d) Kaur, N. Microwave-Assisted Synthesis of Five Membered O-Heterocycles. Synth. Commun. 2014, 44, 3483–3508. DOI: 10.1080/00397911.2013.800213. (e) Kaur, N. Microwave-Assisted Synthesis of Five Membered O,N-Heterocycles. Synth. Commun. 2014, 44, 3509–3537. DOI: 10.1080/00397911.2013.800214. (f) Kaur, N. Microwave-Assisted Synthesis of Five Membered O,N,N-Heterocycles. Synth. Commun. 2014, 44, 3229–3247. DOI: 10.1080/00397911.2013.798666. (g) Trost, B. The Atom economy- A Search for Synthetic Efficiency. Science 1991, 254, 1471–1477. DOI: 10.1126/science.1962206. (h) Kaur, N. Ruthenium Catalysis in Six-Membered O-Heterocycles Synthesis. Synth. Commun. 2018, 48, 1551–1587. DOI: 10.1080/00397911.2018.1457698. (i) Kaur, N. Green Synthesis of Three to Five-Membered O-Heterocycles Using Ionic Liquids. Synth. Commun. 2018, 48, 1588–1613. DOI: 10.1080/00397911.2018.1458243. (j) Kaur, N. Ultrasound-Assisted Green Synthesis of Five-Membered O- and S-Heterocycles. Synth. Commun. 2018, 48, 1715–1738. DOI: 10.1080/00397911.2018.1460671. (k) Kaur, N. Photochemical Mediated Reactions in Five-Membered O-Heterocycles Synthesis. Synth. Commun. 2018, 48, 2119–2149. DOI: 10.1080/00397911.2018.1485165.
  • (a) Seebach, D. Organische Synthese - Wohin? Angew. Chem. 1990, 102, 1363–1409. DOI: 10.1002/ange.19901021118. (b) Kaur, N. Palladium-Catalyzed Approach to the Synthesis of S-Heterocycles. Catal. Rev. 2015, 57, 478–564. DOI: 10.1080/01614940.2015.1082824. (c) Kaur, N. Photochemical Reactions for the Synthesis of Six-Membered O-Heterocycles. COS. 2018, 15, 298–320. DOI: 10.2174/1570179414666171011160355. (d) Kaur, N. Gold Catalysts in the Synthesis of Five-Membered N-Heterocycles. Curr. Organocatal. 2017, 4, 122–154.; (e) Kaur, N. Perspectives of Ionic Liquids Applications for the Synthesis of Five and Six-Membered O,N-Heterocycles. Synth. Commun. 2018, 48, 473–495. DOI: 10.1080/00397911.2017.1406521. (f) Kaur, N. Cobalt-Catalyzed C–N, C–O, C–S Bond Formation: Synthesis of Heterocycles. J. Iran. Chem. Soc. 2019, 16, 2525–2553. DOI: 10.1007/s13738-019-01731-1.
  • (a) Hoberg, J. O. Synthesis of Seven-Membered Oxacycles. Tetrahedron 1998, 54, 12631–12670. DOI: 10.1016/S0040-4020(98)00596-1. (b) Kaur, N. Metal Catalysts: Applications in Higher Membered N-Heterocycles Synthesis. J. Iran. Chem. Soc. 2015, 12, 9–45. DOI: 10.1007/s13738-014-0451-5. (c) Kaur, N. Insight into Microwave-Assisted Synthesis of Benzo Derivatives of Five Membered N,N-Heterocycles. Synth. Commun. 2015, 45, 1269–1300. DOI: 10.1080/00397911.2013.827725. (d) Kaur, N. Synthesis of Fused Five-Membered N,N-Heterocycles Using Microwave Irradiation. Synth. Commun. 2015, 45, 1379–1410. DOI: 10.1080/00397911.2013.828078. (e) Kaur, N. Microwave-Assisted Synthesis of Seven Membered S-Heterocycles. Synth. Commun. 2014, 44, 3201–3228. DOI: 10.1080/00397911.2013.798665. (f) Kaur, N. Six Membered N-Heterocycles: Microwave-Assisted Synthesis. Synth. Commun. 2015, 45, 1–34. DOI: 10.1080/00397911.2013.813548. (g) Kaur, N. Polycyclic Six Membered N-Heterocycles: Microwave-Assisted Synthesis. Synth. Commun. 2015, 45, 35–69. DOI: 10.1080/00397911.2013.813549. (h) Kaur, N. Mercury-Catalyzed Synthesis of Heterocycles. Synth. Commun. 2018, 48, 2715–2749. DOI: 10.1080/00397911.2018.1497657. (i) Kaur, N. Photochemical Irradiation: Seven and Higher Membered O-Heterocycles. Synth. Commun. 2018, 48, 2935–2964. DOI: 10.1080/00397911.2018.1514051. (j) Kaur, N. Synthesis of Seven and Higher Membered Nitrogen Containing Heterocycles Using Photochemical Irradiation. Synth. Commun. 2018, 48, 2815–2849. DOI: 10.1080/00397911.2018.1501488. (k) Kaur, N. Ruthenium Catalyzed Synthesis of Five-Membered O-Heterocycles. Inorg. Chem. Commun. 2019, 99, 82–107. DOI: 10.1016/j.inoche.2018.11.011. (l) Kaur, N. Application of Silver-Promoted Reactions in the Synthesis of Five-Membered O-Heterocycles. Synth. Commun. 2019, 49, 743–789. DOI: 10.1080/00397911.2019.1570525. (m) Kaur, N. Synthesis of Seven and Higher-Membered Heterocycles Using Ruthenium Catalysts. Synth. Commun. 2019, 49, 617–661. DOI: 10.1080/00397911.2018.1555711.
  • (a) Kaur, N. Benign Approaches for the Microwave-Assisted Synthesis of Five-Membered 1,2-N,N-Heterocycles. J. Heterocyclic Chem. 2015, 52, 953–973. DOI: 10.1002/jhet.2129. ; (b) Kaur, N. Methods for Metal and Non-Metal Catalyzed Synthesis of Six-Membered Oxygen Containing Poly-Heterocycles. COS. 2017, 14, 531–556. DOI: 10.2174/1570179413666161021104941. ; (c) Kaur, N. Photochemical Reactions: Synthesis of Six-Membered N-Heterocycles. Curr. Org. Synth. 2017, 14, 972–998.; (d) Kaur, N. Ionic Liquids: Promising but Challenging Solvents for the Synthesis of N-Heterocycles. Mini Rev. Org. Chem. 2017, 14, 3–23. DOI: 10.2174/1570193X13666161019120050. (e) Kaur, N. Metal Catalysts for the Formation of Six-Membered N-Polyheterocycles. Synth. React. Inorg. Met. Org. Nano-Met. Chem. 2016, 46, 983–1020. 10.1080/15533174.2014.989620. (f) Kaur, N. Applications of Gold Catalysts for the Synthesis of Five-Membered O-Heterocycles. Inorg. Nano-Met. Chem. 2017, 47, 163–187. DOI: 10.1080/15533174.2015.1068809. (g) Stach, H.; Hesse, M. Synthesis of Macrocyclic Compounds by Ring Enlargement. Tetrahedron 1988, 44, 1573–1590. DOI: 10.1016/S0040-4020(01)86717-X. (h) Kaur, N. Copper Catalysts in the Synthesis of Five-Membered N-Polyheterocycles. COS. 2018, 15, 940–971. DOI: 10.2174/1570179415666180815144442. ; (i) Kaur, N. Recent Developments in the Synthesis of Nitrogen Containing Five-Membered Polyheterocycles Using Rhodium Catalysts. Synth. Commun. 2018, 48, 2457–2474. DOI: 10.1080/00397911.2018.1487070.
  • (a) Evans, P. A.; Holmes, A. B. Medium Ring Nitrogen Heterocyles. Tetrahedron 1991, 47, 9131–9166. DOI: 10.1016/S0040-4020(01)96203-9. (b) Kaur, N. Ultrasound Assisted Synthesis of Six-Membered N-Heterocycles. Mini Rev. Org. Chem. 2018, 15, 520–536. DOI: 10.2174/1570193x15666180221152535. (c) Kaur, N. Synthesis of Five-Membered Heterocycles Containing Nitrogen Heteroatom under Ultrasonic Irradiation. Mini Rev. Org. Chem. 2019, 16, 481–503. DOI: 10.2174/1570193X15666180709144028. (d) Kaur, N. Ionic Liquid Promoted Eco-Friendly and Efficient Synthesis of Six-Membered N-Polyheterocycles. Cos. 2018, 15, 1124–1146. DOI: 10.2174/1570179415666180903102542. ; (e) Kaur, N. Metal and Non-Metal Catalysts in the Synthesis of Five-Membered S-Heterocycles. Cos. 2019, 16, 258–275. DOI: 10.2174/1570179416666181207144430. ; (f) Kaur, N.; Bhardwaj, P.; Devi, M.; Verma, Y.; Ahlawat, N.; Grewal, P. Ionic Liquids in the Synthesis of Five-Membered N,N-, N,N,N- and N,N,N,N-Heterocycles. COC. 2019, 23, 1214–1238.
  • Dowd, P.; Zhang, W. Free Radical-Mediated Ring Expansion and Related Annulations. Chem. Rev. 1993, 93, 2091–2115. DOI: 10.1021/cr00022a007.
  • (a) Albini, A.; Fagnoni, M. Green Chemistry and Photochemistry Were Born at the Same Time. Green Chem. 2004, 6, 1–6. DOI: 10.1039/b309592d. (b) Kaur, N. Microwave-Assisted Synthesis: Fused Five Membered N-Heterocycles. Synth. Commun. 2015, 45, 789–823. DOI: 10.1080/00397911.2013.824984. (c) Kaur, N. Six Membered Heterocycles with Three and Four N-Heteroatoms: Microwave-Assisted Synthesis. Synth. Commun. 2015, 45, 151–172. DOI: 10.1080/00397911.2013.813550. (d) Kaur, N. Application of Microwave-Assisted Synthesis in the Synthesis of Fused Six-Membered Heterocycles with N-Heteroatom. Synth. Commun. 2015, 45, 173–201. DOI: 10.1080/00397911.2013.816734. (e) Kaur, N. Microwave-Assisted Synthesis of Fused Polycyclic Six Membered N-Heterocycles. Synth. Commun. 2015, 45, 273–299. DOI: 10.1080/00397911.2013.816735. (f) Kaur, N. Review of Microwave-Assisted Synthesis of Benzo Fused Six-Membered N,N-Heterocycles. Synth. Commun. 2015, 45, 300–330. DOI: 10.1080/00397911.2013.816736. (g) Kaur, N.; Kishore, D. Synthetic Strategies Applicable in the Synthesis of Privileged Scaffold: 1,4-Benzodiazepine. Synth. Commun. 2014, 44, 1375–1413. DOI: 10.1080/00397911.2013.772202.
  • Albini, A.; Fagnoni, M.; Mella, M. Environment-Friendly Organic Synthesis. The Photochemical Approach. Pure Appl. Chem. 2000, 72, 1321–1326. DOI: 10.1351/pac200072071321.
  • (a) Kaur, N. Environmentally Benign Synthesis of Five Membered 1,3-N,N-Heterocycles by Microwave Irradiation. Synth. Commun. 2015, 45, 909–943. DOI: 10.1080/00397911.2013.825808. (b) Kaur, N. Advances in Microwave-Assisted Synthesis for Five Membered N-Heterocycles Synthesis. Synth. Commun. 2015, 45, 432–457. DOI: 10.1080/00397911.2013.824982. (c) Kaur, N. Microwave-Assisted Synthesis of Five Membered S-Heterocycles. J. Iran. Chem. Soc. 2014, 11, 523–564. DOI: 10.1007/s13738-013-0325-2. (d) Kaur, N. Review on the Synthesis of Six Membered N,N-Heterocycles by Microwave Irradiation. Synth. Commun. 2015, 45, 1145–1182. DOI: 10.1080/00397911.2013.827208. (e) Kaur, N. Greener and Expeditious Synthesis of Fused Six-Membered N,N-Heterocycles Using Microwave Irradiation. Synth. Commun. 2015, 45, 1493–1519. DOI: 10.1080/00397911.2013.828236; (f) Kaur, N. Applications of Microwaves in the Synthesis of Polycyclic Six Membered N,N-Heterocycles. Synth. Commun. 2015, 45, 1599–1631. DOI: 10.1080/00397911.2013.828755. (g) Kaur, N. Synthesis of Five-Membered N,N,N- and N,N,N,N-Heterocyclic Compounds. Appl. Microwaves. Synth. Commun. 2015, 45, 1711–1742. DOI: 10.1080/00397911.2013.828756. (h) Wessig, P. Organocatalytic Enantioselective Photoreactions. Angew. Chem. Int. Ed. 2006, 45, 2168–2171. DOI: 10.1002/anie.200503908. (i) Kaur, N. Palladium Acetate and Phosphine Assisted Synthesis of Five-Membered N-Heterocycles. Synth. Commun. 2019, 49, 483–514. DOI: 10.1080/00397911.2018.1536213.
  • Dalko, P. I.; Moisan, L. In the Golden Age of Organocatalysis. Angew. Chem. Int. Ed. Engl. 2004, 43, 5138–5175. DOI: 10.1002/anie.200400650.
  • List, B. Proline-Catalyzed Asymmetric Reactions. Tetrahedron 2002, 58, 5573–5590. DOI: 10.1016/S0040-4020(02)00516-1.
  • Schreiner, P. R. Metal-Free Organocatalysis through Explicit Hydrogen Bonding Interactions. Chem. Soc. Rev. 2003, 32, 289–296. DOI: 10.1039/b107298f.
  • (a) Czarnik, A. W. Guest editorial. Acc. Chem. Res. 1996, 29(3), 112–113. DOI: 10.1021/ar950256n. (b) Kaur, N. Role of Microwaves in the Synthesis of Fused Five Membered Heterocycles with Three N-Heteroatoms. Synth. Commun. 2015, 45, 403–431. DOI: 10.1080/00397911.2013.824981. (c) Kaur, N. Recent Impact of Microwave-Assisted Synthesis on Benzo Derivatives of Five Membered N-Heterocycles. Synth. Commun. 2015, 45, 539–568. 10.1080/00397911.2013.824983. (d) Kaur, N.; Kishore, D. Microwave-Assisted Synthesis of Seven and Higher Membered N-Heterocycles. Synth. Commun. 2014, 44, 2577–2614. DOI: 10.1080/00397911.2013.783922. (e) Kaur, N.; Kishore, D. Microwave-Assisted Synthesis of Six-Membered S-Heterocycles. Synth. Commun. 2014, 44, 2615–2644. DOI: 10.1080/00397911.2013.792354. (f) Kaur, N.; Kishore, D. Microwave-Assisted Synthesis of Seven and Higher Membered O-Heterocycles. Synth. Commun. 2014, 44, 2739–2755. DOI: 10.1080/00397911.2013.796382.
  • Nicolaou, K. C.; Vourloumis, D.; Winssinger, N.; Baran, P. S. The Art and Science of Total Synthesis at the Dawn of the Twenty-First Century. Angew. Chem. Int. Ed. 2000, 39, 44–122.
  • (a) Kaur, N. Palladium Catalysts: Synthesis of Five-Membered N-Heterocycles Fused with Other Heterocycles. Catal. Rev. 2015, 57, 1–78. 10.1080/01614940.2014.976118. (b) Kaur, N.; Kishore, D. Microwave-Assisted Synthesis of Six Membered O,O-Heterocycles. Synth. Commun. 2014, 44, 3082–3111. DOI: 10.1080/00397911.2013.796384. (c) Kaur, N.; Kishore, D. Microwave-Assisted Synthesis of Six Membered O-Heterocycles. Synth. Commun. 2014, 44, 3047–3081. DOI: 10.1080/00397911.2013.796383. (d) Wender, P. A.; Croatt, M. P.; Witulski, B. New Reactions and Step Economy: The Total Synthesis of (+/−)-Salsolene Oxide Based on the Type II Transition Metal-Catalyzed Intramolecular [4 + 4] Cycloaddition. Tetrahedron 2006, 62, 7505–7511. DOI: 10.1016/j.tet.2006.02.085.
  • Wender, P. A.; Verma, V. A.; Paxton, T. J.; Pillow, T. H. Function-Oriented Synthesis, Step Economy, and Drug Design. Acc. Chem. Res. 2008, 41, 40–49. DOI: 10.1021/ar700155p.
  • Burns, N. Z.; Baran, P. S.; Hoffmann, R. W. Redox Economy in Organic Synthesis. Angew. Chem. Int. Ed. Engl. 2009, 48, 2854–2867. DOI: 10.1002/anie.200806086.
  • Odum, R. A.; Schmall, B. Selectivity in the Photoisomerization of 3H-Azepines. J. Chem. Soc. D 1969, 1299–1300. DOI: 10.1039/c29690001299.
  • Odum, R. A.; Schmall, B. Photoisomerization of 3H-azepines. J. Chem. Res. 1997, 276–277. DOI: 10.1039/a702465g.
  • Chapman, O. L.; Hoganson, E. D. Photoisomerization of 1-Aza-3,5,7-Trimethylcyclohepta-4,6-Dien-2-One. J. Am. Chem. Soc. 1964, 86, 498–500. DOI: 10.1021/ja01057a042.
  • Paquette, L. A. 2-azabicyclo[3.2.0]Hep-6-en-3-Ones. U.S. Patent 1966, 3, 285–934.
  • Bou-Hamdan, F. R.; Levesque, F.; O’Brien, A. G.; Seeberger, P. H. Continuous Flow Photolysis of Aryl Azides: Preparation of 3H-Azepinones. Beilstein J. Org. Chem. 2011, 7, 1124–1129. DOI: 10.3762/bjoc.7.129.
  • Coates, R. M.; Muskopf, J. W.; Senter, P. A. Synthesis of Stereoisomeric 9a-Methylhydrodicyclopenta[a,d]Cyclooctan-1-Ones Related to the Ophiobolins and Ceroplastins via Annelative Ring Expansion of Hydrindene Precursors. J. Org. Chem. 1985, 50, 3541–3557. DOI: 10.1021/jo00219a022.
  • Gimenez-Arnau, E.; Mabic, S.; Lepoittevin, J.-P. Synthesis and Photocyclization of Alpha-Methylene-Gamma-Butyrolactone-Thymine Heterodimers. Chem. Res. Toxicol. 1995, 8, 22–26. DOI: 10.1021/tx00043a002.
  • Gomez, A. M.; Mantecon, S.; Velazquez, S.; Valverde, S.; Herczegh, P.; Lopez, J. C. Carbohydrates to Carbocycles: Regio- and Stereoselectivity in the Intramolecular [2 + 2] Photocycloaddition of Dienic 2-Enono-δ-Lactones. Synlett. 1998, 1402–1404. DOI: 10.1055/s-1998-1967.
  • Wrobel, M. N.; Margaretha, P. Diastereomer-Differentiating Photoisomerization of 5-(Cyclopent-2-en-1-yl)-2,5-Dihydro-1H-Pyrrol-2-Ones. Chem. Commun. 1998, 541–542. DOI: 10.1039/a708365c.
  • Wrobel, M. N.; Margaretha, P. Photocycloisomerization of Boc‐Protected 5‐Alkenyl‐2,5‐Dihydro‐1H‐Pyrrol‐2‐Ones. Helvetica 2003, 86, 515–521. DOI: 10.1002/hlca.200390051.
  • Kemmler, M.; Bach, T. [2 + 2] Photocycloaddition of Tetronates. Angew. Chem. Int. Ed. Engl. 2003, 42, 4824–4826. DOI: 10.1002/anie.200352171.
  • Kemmler, M.; Herdtweck, E.; Bach, T. Inter‐ and Intramolecular [2 + 2]‐Photocycloaddition of Tetronates – Stereoselectivity, Mechanism, Scope and Synthetic Applications. Eur. J. Org. Chem. 2004, 22, 4582–4595. DOI: 10.1002/ejoc.200400551.
  • Basler, B.; Schuster, O.; Bach, T. Conformationally Constrained β-Amino Acid Derivatives by Intramolecular [2 + 2]-Photocycloaddition of a Tetronic Acid Amide and Subsequent Lactone Ring Opening. J. Org. Chem. 2005, 70, 9798–9808.
  • Fleck, M.; Yang, C.; Wada, T.; Inoue, Y.; Bach, T. Regioselective [2 + 2]-Photocycloaddition Reactions of Chiral Tetronates-Influence of Temperature, Pressure, and Reaction Medium. Chem. Commun. 2007, 822–824. DOI: 10.1039/B613985J.
  • Albrecht, D.; Basler, B.; Bach, T. Preparation and Intramolecular [2 + 2]-Photocycloaddition of 1,5-Dihydropyrrol-2-Ones and 5,6-Dihydro-1H-Pyridin-2-Ones with C-, N-, and O-Linked Alkenyl Side Chains at the 4-Position. J. Org. Chem. 2008, 73, 2345–2356. DOI: 10.1021/jo7027129.
  • Lowe, G.; Yeung, H. W. Synthesis of a β-Lactam Related to the Cephalosporins. J. Chem. Soc., Perkin Trans. 1973, 2907–2910. DOI: 10.1039/P19730002907.
  • Nakagawa, S.; Naito, T.; Kawaguchi, H. Structures of Bu-2313 a and B, New anti-Anaerobic Antibiotics and Syntheses of Their Analogs. Heterocycles 1979, 13, 477–495. DOI: 10.3987/S-1979-01-0477.
  • Carroll, W. A.; Agrios, K. A.; Altenbach, R. J.; Buckner, S. A.; Chen, Y.; Coghlan, M. J.; Daza, A. V.; Drizin, I.; Gopalakrishnan, M.; Henry, R. F.; et al. Synthesis and Structure-Activity Relationships of a Novel Series of Tricyclic Dihydropyridine-Based KATP Openers That Potently Inhibit Bladder Contractions In Vitro. J. Med. Chem. 2004, 47, 3180–3192. DOI: 10.1021/jm030357o.
  • Lewis, F. D.; Barancyk, S. V. Lewis Acid Catalysis of Photochemical Reactions. 8. Photodimerization and Cross-Cycloaddition of Coumarin. J. Am. Chem. Soc. 1989, 111, 8653–8661. DOI: 10.1021/ja00205a015.
  • Guo, H.; Herdtweck, E.; Bach, T. Enantioselective Lewis Acid Catalysis in Intramolecular [2 + 2] Photocycloaddition Reactions of Coumarins. Angew. Chem. Int. Ed. 2010, 49, 7782–7785. DOI: 10.1002/anie.201003619.
  • Brimioulle, R.; Guo, H.; Bach, T. Enantioselective Intramolecular [2 + 2] Photocycloaddition Reactions of 4‐Substituted Coumarins Catalyzed by a Chiral Lewis Acid. Chem. Eur. J. 2012, 18, 7552–7560. DOI: 10.1002/chem.201104032.
  • Takeuchi, H.; Nagai, T.; Tokura, N. The Charge-Transfer Complex and Photochemical Reaction of 9-Anthraldehyde Hydrazone in Sulphur Dioxide-Oxygen. J. Chem. Soc. 1972, 2, 420–424. DOI: 10.1039/P29720000420.
  • Binkley, R. W. Photochemistry of Unsaturated Nitrogen-Containing Compounds. VII. Photolysis of Phenylhydrazones. J. Org. Chem. 1970, 35, 2796–2801. DOI: 10.1021/jo00833a072.
  • Roberts, B. P.; Winter, J. N. Electron Spin Resonance Studies of Radicals Derived from Organic Azides. J. Chem. Soc. 1979, 2, 1353–1361. DOI: 10.1039/p29790001353.
  • Callier-Dublanchet, A.-C.; Quiclet-Sire, B.; Zard, S. Z. Iminyl Radical Generation via Iminodithiocarbonate Group Transfer. Tetrahedron Lett. 1997, 38, 2463–2466. DOI: 10.1016/S0040-4039(97)00384-5.
  • Smith, P. A.; Brown, B. E. The Synthesis of Heterocyclic Compounds from Aryl Azides. I. Bromo and Nitro Carbazoles. J. Am. Chem. Soc. 1951, 73, 2435–2437. DOI: 10.1021/ja01150a008.
  • Moore, D. E.; Roberts-Thomson, S.; Zhen, D.; Duke, C. C. Photochemical Studies on the Anti-Inflammatory Drug Diclofenac. Photochem. Photobiol. 1990, 52, 685–690. DOI: 10.1111/j.1751-1097.1990.tb08667.x.
  • Philip, J.; Szulczewski, D. H. Photolytic Decomposition of N-(2,6-Dichloro-m-Tolyl)Anthranilic Acid (Meclofenamic Acid). J. Pharm. Sci. 1973, 62, 1479–1482. DOI: 10.1002/jps.2600620919.
  • Riester, D.; Budde, J.; Gach, C.; Gillner, A.; Wehner, M. High Speed Photography of Laser Induced Forward Transfer (LIFT) of Single and Double-Layered Transfer Layers for Single Cell Transfer. Jlmn. 2016, 2, 199–203. DOI: 10.2961/jlmn.2016.02.0010.
  • Brase, S.; Gil, C.; Knepper, K.; Zimmermann, V. Organic Azides: An Exploding Diversity of a Unique Class of Compounds. Angew. Chem. Int. Ed. 2005, 44, 5188–5240. DOI: 10.1002/anie.200400657.
  • Brase, S.; Banert, K. Organic Azides Syntheses and Applications; Wiley: Chichester, UK, 2009.
  • Stokes, B. J.; Jovanovic, B.; Dong, H.; Richert, K. J.; Riell, R. D.; Driver, T. G. Rh2(II)-Catalyzed Synthesis of Carbazoles from Biaryl Azides. J. Org. Chem. 2009, 74, 3225–3228.
  • Jordan-Hore, J. A.; Johansson, C. C. C.; Gulias, M.; Beck, E. M.; Gaunt, M. J. Oxidative Pd(II)-Catalyzed C-H Bond Amination to Carbazole at Ambient Temperature. J. Am. Chem. Soc. 2008, 130, 16184–16186. DOI: 10.1021/ja806543s.
  • Winter, D. K.; Drouin, A.; Lessard, J.; Spino, C. Photochemical Rearrangement of N-Chlorolactams: A Route to N-Heterocycles through Concerted Ring Contraction. J. Org. Chem. 2010, 75, 2610–2618. DOI: 10.1021/jo100181h.
  • Swenton, J. S.; Ikeler, T. J.; Williams, B. H. Photochemistry of Singlet and Triplet Azide Excited States. J. Am. Chem. Soc. 1970, 92, 3103–3109. DOI: 10.1021/ja00713a031.
  • Sundberg, R. J.; Heintzelman, R. W. Reactivity of Aryl Nitrenes. Competition between Carbazole Formation and Internal Bond Reorganization in Biphenylnitrenes. J. Org. Chem. 1974, 39, 2546–2552. DOI: 10.1021/jo00931a020.
  • Sundberg, R. J.; Gillespie, D. W.; DeGraff, B. A. Mechanism of Photolytic Conversion of 2-Azidobiphenyl to Carbazole. J. Am. Chem. Soc. 1975, 97, 6193–6196. DOI: 10.1021/ja00854a042.
  • Bremus-Kobberling, E.; Gillner, A.; Avemaria, F.; Rethore, C.; Brase, S. Photochemistry with Laser Radiation in Condensed Phase Using Miniaturized Photoreactors. Beilstein J. Org. Chem. 2012, 8, 1213–1218. DOI: 10.3762/bjoc.8.135.
  • Woodward, R. B.; Hoffmann, R. Stereochemistry of Electrocyclic Reactions. J. Am. Chem. Soc. 1965, 87, 395–397. DOI: 10.1021/ja01080a054.
  • Hoffmann, R.; Woodward, R. B. Selection Rules for Concerted Cycloaddition Reactions. J. Am. Chem. Soc. 1965, 87, 2046–2048. DOI: 10.1021/ja01087a034.
  • Hoffmann, R.; Woodward, R. B. Conservation of Orbital Symmetry. Acc. Chem. Res. 1968, 1, 17–22. DOI: 10.1021/ar50001a003.
  • Woodward, R. B.; Hoffmann, R. The Conservation of Orbital Symmetry. Angew. Chem. Int. Ed. Engl. 1969, 8, 781–853. DOI: 10.1002/anie.196907811.
  • Beaudry, C. M.; Malerich, J. P.; Trauner, D. Biosynthetic and Biomimetic Electrocyclizations. Chem. Rev. 2005, 105, 4757–4778. DOI: 10.1021/cr0406110.
  • Gilbert, A. In CRC Handbook of Organic Photochemistry and Photobiology, 2nd ed.; Horspool, W., Lenci, F., Eds.; CRC Press: Boca Raton, FL, 2004.
  • Hoffmann, N. In CRC Handbook of Organic Photochemistry and Photobiology. 2nd ed.; Horspool, W., Lenci, F., Eds.; CRC Press: Boca Raton, FL, 2004.
  • Bois, F.; Gardette, D.; Gramain, J.-C. A New Asymmetric Synthesis of (S)-(+)-Pipecoline and (S)-(+)- and (R)-(−)-Coniine by Reductive Photocyclization of Dienamides. Tetrahedron Lett. 2000, 41, 8769–8772. DOI: 10.1016/S0040-4039(00)01549-5.
  • Rigby, J. H.; Maharoof, U. S. M.; Mateo, M. E. Studies on the Narciclasine Alkaloids: Total Synthesis of (+)-Narciclasine and (+)-Pancratistatin. J. Am. Chem. Soc. 2000, 122, 6624–6628. DOI: 10.1021/ja000930i.
  • Tietcheu, C.; Garcia, C.; Gardette, D.; Dugat, D.; Gramain, J.-C. Efficient Photochemical Synthesis of Tricyclic Keto-Indoles. J. Heterocycl. Chem. 2002, 39, 965–973. DOI: 10.1002/jhet.5570390517.
  • Hoffmann, N. Photochemical Reactions as Key Steps in Organic Synthesis. Chem. Rev. 2008, 108, 1052–1103. DOI: 10.1021/cr0680336.
  • Schultz, A. G.; Motyka, L. In Organic Photochemistry; Padwa, A., Ed.; Marcel Dekker, Inc.: New York, NY, 1983, Vol. 6, pp 1–119.
  • Gramain, J.-C.; Husson, H. P.; Troin, Y. A Novel and Efficient Synthesis of the Aspidosperma Alkaloid Ring System: N(a)-Benzyldeethylaspidospermidine. J. Org. Chem. 1985, 50, 5517–5520. DOI: 10.1021/jo00350a016.
  • Dufour, M.; Gramain, J.-C.; Husson, H.-P.; Sinibaldi, M.-E.; Troin, Y. Total Synthesis of (a)Aspidofractinine. Tetrahedron Lett. 1989, 30, 3429–3432. DOI: 10.1016/S0040-4039(00)99263-3.
  • Dufour, M.; Gramain, J.-C.; Husson, H.-P.; Sinibaldi, M.-E.; Troin, Y. Total Synthesis of Indole Alkaloids – A New Strategy for (+/−)-19-Oxoaspidospermidine and (+/−)-19-Oxoaspidofractinine. J. Org. Chem. 1990, 55, 5483–5490. DOI: 10.1021/jo00307a019.
  • Dufour, M.; Gramain, J.-C.; Husson, H. P.; Sinibaldi, M. E.; Troin, Y. Convergent Approach to Tetracyclic [ABCE] Intermediates in Aspidosperma Alkaloid Synthesis. Synth. Commun. 1992, 22, 189–200. DOI: 10.1080/00397919208021293.
  • Kinoshita, H.; Ohnuma, T.; Oishi, T.; Ban, Y. Application of the New Acylating Agents [PhS(O)–CH=C(OMe)Cl and PhSO2–CH=C(OMe)Cl] to the Synthesis of Indole Alkaloids. A Total Synthesis of (±)-Aspidofractinine. Chem. Lett. 1986, 15, 927–930. DOI: 10.1246/cl.1986.927.
  • Bach, T.; Hehn, J. P. Photochemical Reactions as Key Steps in Natural Product Synthesis. Angew. Chem. Int. Ed. 2011, 50, 1000–1045. DOI: 10.1002/anie.201002845.
  • (a) Vaillard, S. E.; Postigo, A.; Rossi, R. A. Syntheses of 3-substituted 2,3-dihydrobenzofuranes, 1,2-dihydronaphtho(2,1-b)furanes, and 2,3-dihydro-1H-indoles by tandem ring closure-S(RN)1 reactions. J. Org. Chem. 2002, 67, 8500–8506. DOI: 10.1021/jo026404m. (b) Peisino, L. E.; Pierini, A. B. Experimental and Computational Study of 6-exo and 7-endo cyclization of aryl radicals followed by tandem S(RN)1 substitution. J. Org. Chem. 2013, 78, 4719–4729. DOI: 10.1021/jo4001788.
  • Forbes, E. J.; Tatlow, J. C.; Wragg, R. T. The Unequivocal Syntheses of 2- and 4-Trifluoromethylcarbazoles via Diphenyls. Tetrahedron 1960, 8, 73–78. DOI: 10.1016/S0040-4020(01)93333-2.
  • Meth-Cohn, O. New Approaches to Heterocycles via Nitrenes. Heterocycles 1980, 14, 1497–1516. DOI: 10.3987/R-1980-10-1497.
  • Chen, J.-R.; Hu, X. Q.; Lu, L. Q.; Xiao, W. J. Exploration of Visible-Light Photocatalysis in Heterocycle Synthesis and Functionalization: Reaction Design and Beyond. Acc. Chem. Res. 2016, 49, 1911–1923. DOI: 10.1021/acs.accounts.6b00254.
  • Albini, A.; Bettinetti, G.; Minoli, G. The Effect of the p-Nitro Group on the Chemistry of Phenylnitrene. A Study via Intramolecular Trapping. J. Chem. Soc., Perkin Trans. 2 1999, 2, 2803–2807. DOI: 10.1039/a903863i.
  • Platz, M. S. Comparison of Phenylcarbene and Phenylnitrene. Acc. Chem. Res. 1995, 28, 487–492. DOI: 10.1021/ar00060a004.
  • Schmittel, M.; Rodriguez, D.; Steffen, J. P. A Highly Efficient Triplet Analog of a Thermal Biradical Cyclization – the Photochemical C2-C6 Cyclization of Enyne-Heteroallenes. Angew. Chem. Int. Ed. 2000, 39, 2152–2155.
  • Nicolaou, K. C.; Maligres, P.; Shin, J.; De Leon, E.; Rideout, D. DNA-Cleavage and Antitumor Activity of Designed Molecules with Conjugated Phosphine Oxide-Allene-Ene-Yne Functionalities. J. Am. Chem. Soc. 1990, 112, 7825–7826. DOI: 10.1021/ja00177a070.
  • Ilhan, F.; Tyson, D. S.; Stasko, D. J.; Kirschbaum, K.; Meador, M. A. Twisted, Z-Shaped Perylene Bisimide. J. Am. Chem. Soc. 2006, 128, 702–703. DOI: 10.1021/ja056912o.
  • Portillo, M.; Maxwell, M. A.; Frederich, J. H. Synthesis of Nitrogen Heterocycles via Photochemical Ring Opening of Pyridazine N-Oxides. Org. Lett. 2016, 18, 5142–5145. DOI: 10.1021/acs.orglett.6b02562.
  • Wagner, P. J. In Molecular and Supramolecular Photochemistry; Ramamurthy, V.; Schanze, K. S. Eds.; Marcel Dekker: New York, NY, 2005; Vol. 12.
  • Wagner, P. J.; Sobczak, M.; Park, B.-S. Stereoselectivity in O-Alkylphenyl Ketone Photochemistry: How Many O-Xylylenes Can One Ketone Form? J. Am. Chem. Soc. 1998, 120, 2488–2489. DOI: 10.1021/ja9736976.
  • Piva, O. In CRC Handbook of Organic Photochemistry and Photobiology. 2nd ed.; Horspool, W., Lenci, F., Eds.; CRC Press: Boca Raton, FL, 2004.
  • Ilhan, F.; Tyson, D. S.; Meador, M. A. Synthesis and Chemosensory Behavior of Anthracene Bisimide Derivatives. Chem. Mater. 2004, 16, 2978–2980. DOI: 10.1021/cm049508h.
  • Ilhan, F.; Tyson, D. S.; Meador, M. A. Phenacenes from Diels-Alder Trapping of Photogenerated o-Xylylenols: Phenanthrenes and Benzo[e]Pyrene Bisimide. Org. Lett. 2006, 8, 577–580. DOI: 10.1021/ol052711d.
  • Tyson, D. S.; Ilhan, F.; Meador, M. A. B.; Smith, D. D.; Scheiman, D. A.; Meador, M. A. Diels-Alder Trapping of Photochemically Generated o-Quinodimethane Intermediates: An Alternative Route to Photocured Polymer Film Development. Macromolecules 2005, 38, 3638–3646. DOI: 10.1021/ma048291+.
  • Chiang, Y.; Kresge, A. J.; Zhu, Y. Flash Photolytic Generation of o-Quinone α-Phenylmethide and o-Quinone α-(p-Anisyl)Methide in Aqueous Solution and Investigation of Their Reactions in That Medium. saturation of Acid-Catalyzed Hydration. J. Am. Chem. Soc. 2002, 124, 717–722. DOI: 10.1021/ja0120375.
  • Chiang, Y.; Kresge, A. J.; Zhu, Y. Flash Photolytic Generation of Ortho-Quinone Methide in Aqueous Solution and Study of Its Chemistry in That Medium. J. Am. Chem. Soc. 2001, 123, 8089–8094. DOI: 10.1021/ja010826g.
  • Nakatani, K.; Higashida, N.; Saito, I. Highly Efficient Photochemical Generation of o-Quinone Methide from Mannich Bases of Phenol Derivatives. Tetrahedron Lett. 1997, 38, 5005–5008. DOI: 10.1016/S0040-4039(97)01071-X.
  • Kishikawa, K.; Akimoto, S.; Kohmoto, S.; Yamamoto, M.; Yamada, K. Intramolecular Photo[4 + 2]Cycloaddition of an Enone with a Benzene Ring. J. Chem. Soc. 1997, 77–84. DOI: 10.1039/a601710j.
  • Streit, U.; Bochet, C. G. The Arene-Alkene Photocycloaddition. Beilstein J. Org. Chem. 2011, 7, 525–542. DOI: 10.3762/bjoc.7.61.
  • Rigby, J. H.; Ahmed, G.; Ferguson, M. D. Heterocumulenes as 2π Partners in Metal Promoted [6π + 2π] Cycloadditions Reactions. Tetrahedron Lett. 1993, 34, 5397–5400. DOI: 10.1016/S0040-4039(00)73918-9.
  • Nuss, J. M. The Photochemistry of Dienes and Polyenes: Application to the Synthesis of Complex Molecules. Chem. Dienes and Polyenes 1999, 1, 263–324.
  • McClure, C. K.; Kiessling, A. J.; Link, J. S. Oxa-di-pi-Methane Photochemical Rearrangement of Quinuclidinones. Synthesis of Pyrrolizidinones. Org. Lett. 2003, 5, 3811–3813. DOI: 10.1021/ol035202p.
  • Uppili, S.; Ramamurthy, V.; Enhanced Enantio- and Diastereoselectivities via Confinement: Photorearrangement of 2,4-Cyclohexadienones Included in Zeolites. Org. Lett. 2002, 4, 87–90. DOI: 10.1021/ol010245w.
  • Armesto, D.; Singh, V. In CRC Handbook of Organic Photochemistry and Photobiology, 1st ed.; Horspool, W., Song, P.-S., Eds.; CRC Press: Boca Raton, FL, 1995, pp 915.
  • Hue, B. T. B.; Dijkink, J.; Kuiper, S.; Larson, K. K.; Guziec, F. S., Jr,; Goubitz, K.; Fraanje, J.; Schenk, H.; van Maarseveen, J. H.; Hiemstra, H. Synthesis of the Cyclobutanone Core of Solanoeclepin a via Intramolecular Allene Butenolide Photocycloaddition. Org. Biomol. Chem. 2003, 1, 4364–4366.
  • Blaauw, R. H.; Briere, J-F d.; Jong, R.; Benningshof, J. C. J.; van Ginkel, A. E.; Fraanje, J.; Goubitz, K.; Schenk, H.; Rutjes, F. P. J. T.; Hiemstra, H. Intramolecular Photochemical Dioxenone-Alkene [2 + 2] Cycloadditions as an Approach to the Bicyclo[2.1.1]Hexane Moiety of Solanoeclepin A. J. Org. Chem. 2001, 66, 233–242. DOI: 10.1002/chin.200125035.
  • Briere, J.-F.; Blaauw, R. H.; Benningshof, J. C. J.; van Ginkel, A. E.; van Maarseveen, J. H.; Hiemstra, H. Synthesis of the Right‐Hand Substructure of Solanoeclepin A. Eur. J. Org. Chem. 2001, 12, 2371–2377. DOI: 10.1002/1099-0690(200106)2001:12<2371::AID-EJOC2371>3.0.CO;2-O.
  • Blaauw, R. H.; Benningshof, J. C. J.; van Ginkel, A. E.; van Maarseveen, J. H.; Hiemstra, H. Intramolecular [2 + 2] Photocycloadditions as an Approach towards the Right-Hand Side of Solanoeclepin A. J. Chem. Soc. 2001, 2250–2256. DOI: 10.1039/b104165g.
  • Hue, B. T. B.; Dijking, J.; Kuiper, S.; van Schaik, S.; van Maarseveen, J. H.; Hiemstra, H. Synthesis of the Tricyclic Core of Solanoeclepin a Through Intramolecular [2 + 2] Photocycloaddition of an Allene Butenolide. Eur. J. Org. Chem. 2006, 1, 127–137. DOI: 10.1002/ejoc.200500609.
  • Coyle, J. D. The Photochemistry of Thiocarbonyl Compounds. Tetrahedron. 1985, 41, 5393–5425. DOI: 10.1016/S0040-4020(01)91341-9.
  • Ramamurthy, V. In Organic Photochemistry; Padwa, A., Ed.; Marcel Dekker: New York, NY, 1985, Vol. 7, pp 231.
  • Ramamurthy, V.; Rao, B. N.; Rao, V. P. In CRC Handbook of Organic Photochemistry and Photobiology, 1st Ed.; Horspool, W., Song, P.-S., Eds.; CRC Press: Boca Raton, FL, 1995, pp 775.
  • de Mayo, P. Photochemical Synthesis. Thione Photochemistry, and the Chemistry of the S2 State. Acc. Chem. Res. 1976, 9, 52–59. DOI: 10.1021/ar50098a002.
  • Gotthardt, H.; Lenz, W. Dependence of the Optical Induction on the Mechanism of the Photochemical Thietane Formation. Tetrahedron Lett. 1979, 20, 2879–2880. DOI: 10.1016/S0040-4039(01)86440-6.
  • Padwa, A.; Jacquez, M. N.; Schmidt, A. An Approach toward Azacycles Using Photochemical and Radical Cyclizations of N-Alkenyl Substituted 5-Thioxopyrrolidin-2-Ones. J. Org. Chem. 2004, 69, 33–45. DOI: 10.1021/jo035127w.
  • Sakamoto, M.; Kawanishi, H.; Mino, T.; Kasashima, Y.; Fujita, T. Photochemical Asymmetric Synthesis of Phenyl-Bearing Quaternary Chiral Carbons Using Chiral-Memory Effect on β-Hydrogen Abstraction by Thiocarbonyl Group. Chem. Commun. 2006, 4608–4610. DOI: 10.1039/B608513J.
  • Gotthardt, H.; Nieberl, S. Neue Lichtinduzierte Synthesen Mit 2‐Thioparabanaten. Chem. Ber. 1976, 109, 2871–2883. DOI: 10.1002/cber.19761090819.
  • Oda, K.; Tsujita, H.; Machida, M. Intermolecular Photoreaction of Arenecarbothioamide with 3-Methyl- and 2,4-Dimethylfurans: A Novel Formation of 2-Arylthiophene Derivatives through Photoinduced Reaction. Heterocycles 2002, 57, 1587–1590. DOI: 10.3987/COM-02-9539.
  • Oda, K.; Nakagami, R.; Haneda, M.; Nishizono, N.; Machida, M. Intermolecular Photoreaction of Benzenecarbothioamide with Beta-Ionone. Heterocycles 2003, 59, 67–70. DOI: 10.3987/COM-02-S19.
  • Sakamoto, M.; Nishio, T. Photochemistry of Nitrogen-Containing Thiocarbonyl Compounds. Heterocycles 2003, 59, 399–427. DOI: 10.3987/REV-02-SR1.
  • Oda, K.; Nakagami, R.; Haneda, M.; Nishizono, N.; Machida, M. Intermolecular Photoaddition Reaction of Benzenecarbothioamide with Gamma,Delta-Unsaturated Ketones: A Novel Formation of Cycloalkane-Fused Pyridine Derivatives by Photoinduced Reaction. Heterocycles 2003, 60, 2019–2022. DOI: 10.3987/COM-03-9828.
  • Senthilvelan, A.; Thirumalai, D.; Ramakrishnan, V. T. Photochemical Synthesis of Triazolo[3,4-b]-1,3(4H)-Benzothiazines: A Detailed Mechanistic Study on Photocyclization/Photodesulfurisation of Triazole-3-Thiones. Tetrahedron 2004, 60, 851–860. DOI: 10.1016/j.tet.2003.11.053.
  • Takechi, H.; Takahashi, H.; Machida, M. Intramolecular Photoreactions of Thiohomophthalimides with an Alkenyl Group in Their N‐Side Chain. Regioselective Synthesis of Heterocycle‐Fused Isoquinoline Derivatives through [2 + 2] Photocycloaddition. J. Heterocycl. Chem 2005, 42, 201–207.
  • Oda, K.; Haneda, M.; Nishizono, N.; Machida, M. Intermolecular Photoreaction of Benzenecarbothioamide with γ,δ-Unsaturated Ketones: Application to Synthesis of Cycloalkane [c]-Fused Pyridines. Heterocycles 2005, 66, 563–566. DOI: 10.3987/COM-05-S(K)19.
  • Sakamoto, M.; Nishio, T. In CRC Handbook of Organic Photochemistry and Photobiology, 2nd ed.; Horspool, W. M., Lenci, F., Eds.; CRC Press: Boca Raton, FL, 2004.
  • Grainger, R. S.; Innocenti, P.; Dithiocarbamate Group Transfer Cyclization Reactions of Carbamoyl Radicals Under “Tin-Free” Conditions. Angew. Chem. Int. Ed. 2004, 43, 3445–3448. DOI: 10.1002/anie.200453600.
  • Kosower, E. M. An Introduction to Physical Organic Chemistry; John Wiley & Sons: New York, NY, 1968, pp 85.
  • Bauer, A.; Westkamper, F.; Grimme, S.; Bach, T.; Catalytic Enantioselective Reactions Driven by Photoinduced Electron Transfer. Nature 2005, 436, 1139–1140. DOI: 10.1038/nature03955.
  • Inoue, Y. In Molecular and Supramolecular Photochemistry; Ramamurthy, V., Schanze, K. S., Eds.; Marcel Dekker: New York, NY, 2004; Vol. 11.
  • Inoue, Y. Synthetic Chemistry: Light on Chirality. Nature 2005, 436, 1099–1100. DOI: 10.1038/4361099a.
  • Griesbeck, A. G.; Hoffmann, N.; Warzecha, K.-D. Photoinduced-Electron-Transfer Chemistry: From Studies on PET Processes to Applications in Natural Product, Synthesis. Acc. Chem. Res. 2007, 40, 128–140. DOI: 10.1021/ar068148w.
  • Warzecha, K.-D.; Gorner, H.; Demuth, M. Photoinduced Electron Transfer from Isoprenoid Polyalkene Acetates to Dicyanoarenes. J. Chem. Soc. 1998, 94, 1701–1706. DOI: 10.1039/a800322j.
  • Bertrand, S.; Hoffmann, N.; Pete, J. P. Highly Efficient and Stereoselective Radical Addition of Tertiary Amines to Electron Deficient Alkenes. Application to the Enantioselective Synthesis of Necine Bases. Eur. J. Org. Chem. 2000, 2000, 2227–2238. DOI: 10.1002/1099-0690(200006)2000:12<2227::AID-EJOC2227>3.0.CO;2-8.
  • Griesbeck, A. G.; Nerowski, F.; Lex, J. Decarboxylative Photocyclization: Synthesis of Benzopyrrolizidines and Subsequent Transformations. J. Org. Chem. 1999, 64, 5213–5217. DOI: 10.1021/jo990390b.
  • Griesbeck, A. G.; Henz, A.; Kramer, W.; Lex, J.; Nerowski, F.; Oelgemoller, M.; Peters, K.; Peters, E.-M. Synthesis of Mediumand Large-Ring Compounds Initiated by Photochemical Decarboxylation of ö-Phthalimido Alkylcarboxylates. Helv. Chim. Acta 1997, 80, 912–933. DOI: 10.1002/hlca.19970800324.
  • Byrne, C.; James, J. P.; Long, C.; Wilcock, D. J. Photochemical Transformations of Cyclic Azimines–X-Ray Crystallographic Analysis of Intermediates in Their Sequential Phototransformations. Chem. Commun. 1996, 945–946. DOI: 10.1039/CC9960000945.
  • Nakagawa, M.; Kato, S.; Kataoka, S.; Hino, T.; Hino, T. 3a-Hydroperoxypyrroloindole from Tryptophan. Isolation and Transformation to Formylkynurenine. J. Am. Chem. Soc. 1979, 101, 3136–3137. DOI: 10.1021/ja00505a060.
  • Didier, C.; Critcher, D. J.; Walshe, N. D.; Kojima, Y.; Yamauchi, Y.; Barrett, A. G. M. Full Stereochemical Assignment and Synthesis of the Potent Anthelmintic Pyrrolobenzoxazine Natural Product CJ-12662. J. Org. Chem. 2004, 69, 7875–7879.
  • Trabanco, A. A.; Montalban, A. G.; Rumbles, G.; Barrett, A. G. M.; Hoffman, B. M. A Seco-Porphyrazine: Superb Sensitizer for Singlet Oxygen Generation and Endoperoxide Synthesis. Synlett 2000, 1010–1012.
  • Lee, S.; Stackow, R.; Foote, C. S.; Barrett, A. G. M.; Hoffman, B. M. Tuning the Singlet Oxygen Quantum Yield of Near-IR-Absorbing Porphyrazines. Photochem. Photobiol. 2003, 77, 18–21. DOI: 10.1562/0031-8655(2003)077<0018:TTSOQY>2.0.CO;2.
  • Sakellariou, E. G.; Montalban, A. G.; Beall, S. L.; Henderson, D.; Meunier, H. G.; Phillips, D.; Suhling, K.; Barrett, A. G. M.; Hoffman, B. M. Novel Peripherally Functionalized Seco-Porphyrazines: Synthesis, Characterization and Spectroscopic Evaluation. Tetrahedron 2003, 59, 9083–9090. DOI: 10.1016/j.tet.2003.09.060.
  • Baum, S. M.; Trabanco, A. A.; Montalban, A. G.; Micallef, A. S.; Zhong, C.; Meunier, H. G.; Suhling, K.; Phillips, D.; White, A. J. P.; Williams, D. J.; et al. Synthesis and Reactions of Aminoporphyrazines with Annulated Five- and Seven-Membered Rings. J. Org. Chem. 2003, 68, 1665–1670. DOI: 10.1021/jo026484u.
  • Parisien-Collette, S.; Cruché, C.; Abel-Snape, X.; Collins, S. K. Photochemical Intramolecular Amination for the Synthesis of Heterocycles. Green Chem. 2017, 19, 4798–4803. DOI: 10.1039/C7GC02261A.
  • Shvydkiv, O.; Gallagher, S.; Nolan, K.; Oelgemöller, M. From Conventional to Microphotochemistry: Photodecarboxylation Reactions Involving Phthalimides. Org. Lett. 2010, 12, 5170–5173. DOI: 10.1021/ol102184u.
  • Oelgemoller, M.; Shvydkiv, O. Recent Advances in Microflow Photochemistry. Molecules 2011, 16, 7522–7550. DOI: 10.3390/molecules16097522.
  • Knowles, J. P.; Elliott, L. D.; Booker-Milburn, K. I. Flow Photochemistry: Old Light Through New Windows. Beilstein J. Org. Chem. 2012, 8, 2025–2052. DOI: 10.3762/bjoc.8.229.
  • Benbow, J. W.; Schulte, G. K.; Danishefsky, S. J. The Total Synthesis of (±) - Mitomycin K. Angew. Chem. Int. Ed. Engl. 1992, 31, 915–917. DOI: 10.1002/anie.199209151.
  • Benbow, J. W.; McClure, K. F.; Danishefsky, S. J. Intramolecular Cycloaddition Reactions of Dienyl Nitroso Compounds: Application to the Synthesis of Mitomycin K. J. Am. Chem. Soc. 1993, 115, 12305–12314. DOI: 10.1021/ja00079a010.
  • Butkovic, K.; Marinic, Z.; Molcanov, K.; Kojic-Prodic, B. Sindler-Kulyk, M. Photochemical and Thermal Intramolecular 1,3-Dipolar Cycloaddition Reactions of New o-Stilbenemethylene-3-Sydnones and Their Synthesis. Beilstein J. Org. Chem. 2011, 7, 1663–1670.
  • Takechi, M. H. L.; Shishido, Y. Photochemical Synthesis of Multicyclic Fused Imidazolidines, Hydropyrazines, and Hydro-1,4-Diazepines. Synthesis 1982, 1078–1081. DOI: 10.1055/s-1982-30075.
  • Takechi, H.; Tateuchi(Nee Oyadomari), S.; Machida, M.; Nishibata, Y.; Aoe, K.; Sato, Y.; Kanaoka, Y. Photoreactions of Succinimides with an N-Acyl Group in the Side Chain. Synthesis and Stereochemistry of Tricyclic Pyrrol[1,2-a]Pyrazine Ring Systems. Chem. Pharm. Bull. 1986, 34, 3142–3152. DOI: 10.1248/cpb.34.3142.
  • Griesbeck, A. G.; Oelgemoller, M.; Lex, J.; Haeuseler, A.; Schmittel, M. Synthesis of Sulfur-Containing Tricyclic Ring Systems by Means of Photoinduced Decarboxylative Cyclizations. Eur. J. Org. Chem. 2001, 2001, 1831–1843. DOI: 10.1002/1099-0690(200105)2001:10<1831::AID-EJOC1831>3.0.CO;2-7.
  • Gorner, H.; Oelgemoller, M.; Griesbeck, A. G. Photodecarboxylation Study of Carboxy-Substituted N-Alkylphthalimides in Aqueous Solution. J. Phys. Chem. A 2002, 106, 1458–1467. DOI: 10.1021/jp011090c.
  • Minter, D. E.; Winslow, C. D. A Photochemical Approach to the Galanthan Ring System. J. Org. Chem. 2004, 69, 1603–1606. DOI: 10.1021/jo0356560.
  • Jin, Z. Amaryllidaceae and Sceletium Alkaloids. Nat Prod Rep. 2005, 22, 111–126. DOI: 10.1039/b316106b.
  • Jin, Z.; Amaryllidaceae and Sceletium Alkaloids. Nat Prod Rep. 2003, 20, 606–614. DOI: 10.1039/b304144c.
  • Jin, Z.; Li, Z.; Huang, R. Muscarine, Imidazole, Oxazole, Thiazole, Amaryllidaceae and Sceletium Alkaloids. Nat. Prod. Rep. 2002, 19, 454–476. DOI: 10.1039/b108923b.
  • Winkler, J. D.; Rouse, M. B.; Greaney, M. F.; Harrison, S. J.; Jeon, Y. T. The First Total Synthesis of (+/−)-Ingenol. J. Am. Chem. Soc. 2002, 124, 9726–9728. DOI: 10.1021/ja026600a.
  • Winkler, J. D.; Harrison, S. J.; Greaney, M. F.; Rouse, M. B. Mechanistic Observations on the Unusual Reactivity of Dioxenone Photosubstrates in the Synthesis of Ingenol. Synthesis 2002, 14, 2150–2154. DOI: 10.1055/s-2002-34370.
  • Winkler, J. D.; Lee, E. C. Y.; Nevels, L. I. A Pauson-Khand Approach to the Synthesis of Ingenol. Org. Lett. 2005, 7, 1489–1491. DOI: 10.1021/ol050103s.
  • Murakami, M.; Kamaya, H.; Kaneko, C.; Sato, M. Use of 1,3-Dioxin-4-Ones and Related Compounds in Synthesis, Part 50. Synthesis of Optically Active 1,3-Dioxin-4-One Derivatives Having a Hydroxymethyl Group at the 2-Position and Their Use for Regio-, Diastereo-, and Enantioselective Synthesis of Substituted Cyclobutanols. Tetrahedron Asym. 2003, 14, 201–215. DOI: 10.1016/S0957-4166(02)00760-7.
  • Itoh, K.; Okazaki, K.; Toyotomi, Y. Photocycloaddition of 1,3-Diphenyl-n-Methyl Enaminoketonatoboron Difluoride with Simple Olefins. Heterocycles 2002, 57, 2065–2080. DOI: 10.3987/COM-02-9575.
  • White, J. D.; Ihle, D. C. Tandem Photocycloaddition-Retro-Mannich Fragmentation of Enaminones. A Route to Spiropyrrolines and the Tetracyclic Core of Koumine. Org. Lett. 2006, 8, 1081–1084. DOI: 10.1021/ol052955y.
  • Winkler, J. D.; Londregan, A. T.; Hamann, M. T. Antimalarial Activity of a New Family of Analogues of Manzamine A. Org. Lett. 2006, 8, 2591–2594. DOI: 10.1021/ol060848d.
  • Winkler, J. D.; Axten, J. M. The First Total Syntheses of Ircinol A, Ircinal A, and Manzamines A and D. J. Am. Chem. Soc. 1998, 120, 6425–6426. DOI: 10.1021/ja981303k.
  • Ninomiya, I.; Naito, T. Novel Total Synthesis of Protoberberine-Type Alkaloids. J. Chem. Soc. Chem. Commun. 1973, 137–137. DOI: 10.1039/c39730000137.
  • Kametani, T.; Honda, T.; Sugai, T.; Fukumoto, K. Alternative Synthesis of Protoberberine Alkaloid (±)-Xylopinine. Heterocycles 1976, 4, 927–932. DOI: 10.3987/R-1976-05-0927.
  • Ninomiya, I.; Naito, T.; Takasugi, H. Photocyclization of Enamides. Part VII. A New Synthesis of the Protoberberine Alkaloids. J. Chem. Soc. 1975, 1720–1724. DOI: 10.1039/p19750001720.
  • Ninomiya, I.; Takasugi, H.; Naito, T. Total Synthesis of (±)-Sinactine and (±)-Cavidine (Base II). Heterocycles 1973, 1, 17–20. DOI: 10.3987/R-1973-01-0017.
  • Ninomiya, I.; Naito, T.; Heterocyclic, T.H. Compounds from Urea Derivatives. Part XXIII. Thiobenzoylated Thiocarbonohydrazides and Their Cyclization. J. Chem. Soc. Perkin Trans. 1 1975, 1787–1791.
  • Ninomiya, I.; Tada, Y.; Miyata, O.; Naito, T. A Formal Total Synthesis of the Alkaloid Yohimbine. Heterocycles 1980, 14, 631–633. DOI: 10.3987/R-1980-05-0631.
  • Pakrashi, S. C.; Mukhopadhyay, R.; Dastidar, P. P. G.; Bhattacharjya, A.; Ali, E. Bharatamine- A Unique Protoberberine Alkaloid from Alungium Lamarckii Thw., Biogenetically Derived from Monoterpenoid Precursor. Tetrahedron Lett. 1983, 24, 291–294. DOI: 10.1016/S0040-4039(00)81388-X.
  • Ninomiya, I.; Yamamoto, O.; Naito, T. Total Synthesis of the Alkloids Homochelidonine. Heterocycles 1977, 7, 137–141. DOI: 10.3987/S-1977-01-0137.
  • Ninomiya, I.; Yamamoto, O.; Naito, T. Photocyclization of Enamides. Part 19. Total Synthesis of (±)-Homochelidonine. J. Chem. Soc. Perkin Trans. 1983, 2171–2174. DOI: 10.1039/P19830002171.
  • Hernandez‐Perez, A. C.; Caron, A.; Collins, S. K. Photochemical Synthesis of Complex Carbazoles: Evaluation of Electronic Effects in Both UV‐ and Visible‐Light Methods in Continuous Flow. Chem. Eur. J. 2015, 21, 16673–16678. DOI: 10.1002/chem.201502661.
  • Iida, H.; Aoyagi, S.; Kibayashi, C. Photocyclization of Enamido-Ketones. Novel Synthesis of Lycorine-Type Alkaloids. J. Chem. Soc. Chem. Commun. 1974, 499–499. DOI: 10.1039/c39740000499.
  • Ninomiya, I.; Naito, T.; Kiguchi, T. A New Stereoselective Synthesis of (±)-Crinan, Basic Ring System of the Alkaloid Crinine. J. Chem. Soc. Chem. Commun. 1970, 0, 1669–1670. DOI: 10.1039/C29700001669.
  • Ninomiya, I.; Naito, T.; Kiguchi, T. Photocyclization of Enamides. Part IV. A New Stereoselective Synthesis of (±)-Crinan. J. Chem. Soc. Perkin Trans. 1 1973, 2261–2264. DOI: 10.1039/P19730002261.
  • Selig, P.; Bach, T. Enantioselective Total Synthesis of the Melodinus Alkaloid (+)-Meloscine. Angew. Chem. Int. Ed. 2008, 47, 5082–5084. DOI: 10.1002/anie.200800693.
  • Selig, P.; Herdtweck, E.; Bach, T. Total Synthesis of Meloscine by a [2 + 2]-Photocycloaddition/Ring-Expansion Route. Chemistry 2009, 15, 3509–3525. DOI: 10.1002/chem.200802383.
  • Bach, T.; Bergmann, H.; Harms, K. Enantioselective Intramolecular [2 + 2]-Photocycloaddition Reactions in Solution. Angew. Chem. 2000, 112, 2391–2393.
  • Bach, T.; Bergmann, H.; Grosch, B.; Harms, K.; Herdtweck, E.; Synthesis of Enantiomerically Pure 1,5,7-Trimethyl-3-Azabicyclo[3.3.1]Nonan-2-Ones as Chiral Host Compounds for Enantioselective Photochemical Reactions in Solution. Synthesis 2001, 2001, 1395–1405. DOI: 10.1055/s-2001-15231.
  • Schmittel, M.; Mahajan, A. A.; Bucher, G.; Photochemical Myers-Saito and C2-C6 Cyclizations of Enyne-Allenes: Direct Detection of Intermediates in Solution. J. Am. Chem. Soc. 2005, 127, 5324–5325. DOI: 10.1021/ja044890k.
  • Schmittel, M.; Vavilala, C.; Kinetic Isotope Effects in the Thermal C2-C6 Cyclization of Enyne-Allenes: Experimental Evidence Supports a Stepwise Mechanism. J. Org. Chem. 2005, 70, 4865–4868. DOI: 10.1021/jo0504971.
  • Zhang, W.; Lu, Y. M.; Nagashima, T. Plate-to-Plate Fluorous Solid-Phase Extraction for Solution-Phase Parallel Synthesis. J. Comb. Chem. 2005, 7, 893–897. DOI: 10.1021/cc050061z.
  • Zhang, W.; Luo, Z. Y.; Chen, C. H. T.; Curran, D. P. Solution-Phase Preparation of a 560-Compound Library of Individual Pure Mappicine Analogues by Fluorous Mixture Synthesis. J. Am. Chem. Soc. 2002, 124, 10443–10450. DOI: 10.1021/ja026947d.
  • Candeias, N. R.; Branco, L. C.; Gois, P. M. P.; Afonso, C. A. M.; Trindade, A. F. More Sustainable Approaches for the Synthesis of N-Based Heterocycles. Chem. Rev. 2009, 109, 2703–2802.
  • Bowman, W. R.; Bridge, C. F.; Cloonan, M. O.; Leach, D. C. Synthesis of Heteroarenes via Radical Cyclization onto Nitriles. Synlett 2001, 2001, 0765–0768. DOI: 10.1055/s-2001-14592.
  • Bowman, W. R.; Bridge, C. F.; Brookes, P.; Cloonan, M. O.; Leach, D. C. Cascade Radical Synthesis of Heteroarenes via Iminyl Radicals. J. Chem. Soc., Perkin Trans. 2002, 1, 58–68.
  • Goehring, R. R. An Exceptionally Brief Synthesis of Eupolauramine. Tetrahedron Lett. 1992, 33, 6045–6048. DOI: 10.1016/S0040-4039(00)60002-3.
  • Erian, A. W.; Sherif, S. M.; Gaber, H. M. The Chemistry of α-Haloketones and Their Utility in Heterocyclic Synthesis. Molecules 2003, 8, 793–865. DOI: 10.3390/81100793.
  • Vialas, C.; Claparols, C.; Pratviel, G.; Meunier, B. Guanine Oxidation in Double-Stranded DNA by Mn-TMPyP/KHSO5: 5,8-Dihydroxy-7,8-Dihydroguanine Residue as a Key Precursor of Imidazolone and Parabanic Acid Derivatives. J. Am. Chem. Soc. 2000, 122, 2157–2167. DOI: 10.1021/ja992860p.
  • Menor-Salvan, C.; Marin-Yaseli, M. R. A New Route for the Prebiotic Synthesis of Nucleobases and Hydantoins in Water/Ice Solutions Involving the Photochemistry of Acetylene. Chem. Eur. J. 2013, 19, 6488–6497.
  • Fuchter, M. J.; Hoffman, B. M.; Barrett, A. G. M. Ring-Opening Metathesis Polymer Sphere-Supported Seco-Porphyrazines: Efficient and Recyclable Photooxygenation Catalysts. J. Org. Chem. 2006, 71, 724–729. DOI: 10.1021/jo052156t.
  • Perry, D. A.; Maeda, H.; Tone, J. Appl., U. P., Ed. 1991, 2.
  • Zeng, Y.; Smith, B. T.; Hershberger, J.; Aube, J. Rearrangements of Bicyclic Nitrones to Lactams: Comparison of Photochemical and Modified Barton Conditions. J. Org. Chem. 2003, 68, 8065–8067. DOI: 10.1021/jo035004b.
  • Lattes, A.; Oliveros, E.; Riviere, M.; Belzeck, C.; Mostowicz, D.; Abramskj, W.; Piccinni-Leopardi, C.; Germain, G.; Van Meerssche, M. Photochemical and Thermal Rearrangement of Oxaziridines. Experimental Evidence in Support of the Stereoelectronic Control Theory. J. Am. Chem. Soc. 1982, 104, 3929–3934. DOI: 10.1021/ja00378a024.
  • Aube, J.; Wang, Y.; Hammond, M.; Tanol, M.; Takusagawa, F.; Velde, D. V. Synthetic Aspects of an Asymmetric Nitrogen-Insertion Process: Preparation of Chiral, Non-Racemic Caprolactams and Valerolactams. Total Synthesis of (-)-Alloyohimbane. J. Am. Chem. Soc. 1990, 112, 4879–4891. DOI: 10.1021/ja00168a038.
  • Aube, J.; Oxiziridine Rearrangements in Asymmetric Synthesis. Chem. Soc. Rev. 1997, 26, 269–277.
  • Frye, S. V.; Haffner, C. D.; Maloney, P. R.; Mook, R. A.; Dorsey, G. F.; Hiner, R. N.; Cribbs, C. M.; Wheeler, T. N.; Ray, J. A.; Andrews, R. C.; et al. 6-Azasteroids: Structure-Activity Relationships for Inhibition of Type 1 and 2 Human 5a-Reductase and Human Adrenal 3b-hydroxy-D5-Steroid Dehydrogenase/3-keto-D5-Steroid Isomerase. J. Med. Chem. 1994, 37, 2352–2360. DOI: 10.1002/chin.199451227.
  • Frye, S. Photochemical Rearrangement of a 6-Azasteroid Oxaziridine to a Novel 17β-Carbomethoxy-a-Homo-B-Seco-6-Aza-3, 5-Androstanedione. J. Mex. Chem. Soc. 2009, 53, 131–133. DOI: 10.29356/jmcs.v53i3.994.
  • Hatanaka, Y.; Sato, Y.; Nakai, H.; Wada, M.; Mizoguchi, T.; Kanaoka, Y. Photochemistry of the Phthalimide System. Photoinduced Reactions. Regioselective Remote Photocyclization -Examples of a Photochemical Macrocyclic Synthesis with Sulfide-Containing Phthalimides. Liebigs Ann. Chem. 1992, 1992, 1113–1123. DOI: 10.1002/jlac.1992199201184.
  • Griesbeck, A. G.; Mauder, H.; Muller, I.; Peters, K.; Peters, E.-M.; von Schnering, H. G. Photochemistry of N-Phthaloyl Derivatives of Methionine. Tetrahedron Lett. 1993, 34, 453–456. DOI: 10.1016/0040-4039(93)85100-B.
  • MacDonald, M.; Velde, D. V.; Aube, J. Synthesis and Conformation of Gly-Gly Dipeptides Constrained with Phenylalanine-Like Aminocaproic Acid linkers. Org. Lett. 2000, 2, 1653–1655. DOI: 10.1021/ol005618s.
  • Griesbeck, A. G.; Heinrich, T.; Oelgemoller, M.; Heidtmann, A.; Molis, A. Synthesis of Cyclic Peptides and Pseudopeptides by Photochemical Decarboxylation of ö-Phthalimido Peptides in Aqueous Solution. Helv. Chim. Acta 2002, 85, 4561–4578. DOI: 10.1002/hlca.200290027.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.