Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 9
779
Views
3
CrossRef citations to date
0
Altmetric
SYNTHETIC COMMUNICATIONS REVIEWS

Exploring the nitro group reduction in low-solubility oligo-phenylenevinylene systems: Rapid synthesis of amino derivatives

, &
Pages 1335-1352 | Received 11 Sep 2019, Published online: 26 Feb 2020

References

  • Sirimanne, P. M.; Premalal, E. V. A. Optical Properties of Poly-[2-Methoxy-5-(2-Ethyl-Hexyloxy)-Phenylene Vinylene and Its Application in Photovoltaic Cells. Sri Lankan J. Phys. 2007, 8, 29–37. DOI: 10.4038/sljp.v8i0.211.
  • Spitsina, N.; Romanova, I.; Lobach, A.; Yakuschenko, I.; Kaplunov, M.; Tolstov, I.; Triebel, M.; Frankevich, E. Poly(2-Methoxy-5-(2′-Ethyl-Hexyloxy)-1,4-Phenylenevinylene)(MEH-PPV)/Nitrogen Containing Derivatives of Fullerene Composites: Optical Characterization and Application in Flexible Polymer Solar Cells. J. Low Temp. Phys. 2006, 142, 201–206. DOI: 10.1007/BF02679494.
  • Lei, T.; Dou, J.-H.; Cao, X.-Y.; Wang, J.-Y.; Pei, J. Electron-Deficient Poly (p-Phenylene Vinylene) Provides Electron Mobility over 1 cm2 V−1 s−1 under Ambient Conditions. J. Am. Chem. Soc. 2013, 135, 12168–12171. DOI: 10.1021/ja403624a.
  • Lee, H.; Vak, D.; Baeg, K.-J.; Nah, Y.-C.; Kim, D.-Y.; Noh, Y.-Y. Synthesis of Poly-p-Phenylene-Vinylene) Derivatives Containing an Oxadiazole Pendant Group and Their Applications to Organic Electronic Devices. J. Nanosci. Nanotechnol. 2013, 13, 3321–3330. DOI: 10.1166/jnn.2013.7291.
  • Muktha, B.; Madras, G.; Guru Row, T. N.; Scherf, U.; Patil, S. Conjugated Polymers for Photocatalysis. J. Phys. Chem. B. 2007, 111, 7994–7998. DOI: 10.1021/jp071096n.
  • Yong, W.-W.; Lu, H.; Li, H.; Wang, S.; Zhang, M.-T. Photocatalytic Hydrogen Production with Conjugated Polymers as Photosensitizers. ACS Appl. Mater. Interfaces 2018, 10, 10828–10834. DOI: 10.1021/acsami.7b18917.
  • Guiglion, P.; Butchosa, C.; Zwijnenburg, M. A. Polymer Photocatalysts for Water Splitting: Insights from Computational Modeling. Macromol. Chem. Phys. 2016, 217, 344–353. DOI: 10.1002/macp.201500432.
  • Thomas, S. W.; Joly, G. D.; Swager, T. M. Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers. Chem. Rev. 2007, 107, 1339–1386. DOI: 10.1021/cr0501339.
  • Noguchi, T.; Roy, B.; Yoshihara, D.; Sakamoto, J.; Yamamoto, T.; Shinkai, S. A Chiral Recognition System Orchestrated by Self-Assembly: Molecular Chirality, Self-Assembly Morphology, and Fluorescence Response. Angew. Chem. Int. Ed. 2017, 56, 12518–12522. DOI: 10.1002/anie.201706142.
  • McGehee, M. D.; Heeger, A. J. Semiconducting (Conjugated) Polymers as Materials for Solid-State Lasers. Adv. Mater. 2000, 12, 1655–1668. DOI: 10.1002/1521-4095(200011)12:22<1655::AID-ADMA1655>3.0.CO;2-2.
  • Diederich, F.; Martin, R. E. Linear Monodisperse p-Conjugated Oligomers: Model Compounds for Polymers and More. Angew. Chem. Int. Ed. 1999, 38, 1350–1377. DOI: 10.1002/(SICI)1521-3773(19990517)38:10<1350::AID-ANIE1350>3.0.CO;2-6.
  • Laughlin, B. J.; Smith, R. C. Gilch and Horner-Wittig Routes to Poly(p-Phenylenevinylene) Derivatives Incorporating Monoalkyl Defect-Free 9,9-Dialkyl-1,4-Fluorenylene Units. Macromolecules 2010, 43, 3744–3749. DOI: 10.1021/ma902346w.
  • Sato, S.; Tajima, K.; Hashimoto, K. Synthesis and Characterization of Regioregular Cyano-Substituted Poly(p-Phenylenevinylene). Macromolecules 2009, 42, 1785–1788. DOI: 10.1021/ma802661x.
  • Campbell, T. W.; McDonald, R. N. Synthesis of Hydrocarbon Derivatives by the Wittig Synthesis. 1. Distyrylbenzenes. J. Org. Chem. 1959, 24, 1246–1251. DOI: 10.1021/jo01091a022.
  • Lehmann, M.; Maier, P. Shape-Persistent, Sterically Crowded Star Mesogens: From Exceptional Columnar Dimer Stacks to Supermesogens. Angew. Chem. Int. Ed. 2015, 54, 9710–9714. DOI: 10.1002/anie.201501988.
  • Rotas, G.; Stranius, K.; Tkachenko, N.; Tagmatarchis, N. Ultralong 20 Milliseconds Charge Separation Lifetime for Photoilluminated Oligophenylenevinylene–Azafullerene Systems. Adv. Funct. Mater. 2018, 28, 1702278–1702278. DOI: 10.1002/adfm.201702278.
  • Cárdenas, J. C.; Ochoa-Puentes, C.; Gutiérrez-Puebla, E.; Sierra, C. A. Synthesis, Crystal Structure Determination and Photoluminescence Properties of a Pure anti Trans-Trans Phenylenevinylene Derivative. Synth. Met. 2016, 215, 194–199. DOI: 10.1016/j.synthmet.2016.02.021.
  • Díaz, C.; Alzate, D.; Rodríguez, R.; Ochoa, C.; Sierra, C. A. High Yield and Stereospecific Synthesis of Segmented Poly (p-Phenylene Vinylene) by the Heck Reaction. Synth. Met. 2013, 172, 32–36. DOI: 10.1016/j.synthmet.2013.03.023.
  • Molano, W. A.; Cárdenas, J. C.; Sierra, C. A.; Carriazo, J. G.; Ochoa-Puentes, C. Pd/Halloysite as a Novel, Efficient and Reusable Heterogeneous Nanocatalyst for the Synthesis of p-Phenylenevinylene Oligomers. ChemistrySelect 2018, 3, 4430–4438. DOI: 10.1002/slct.201800344.
  • Mehnert, C. P.; Weaver, D. W.; Ying, J. Y. Heterogeneous Heck Catalysis with Palladium-Grafted Molecular Sieves. J. Am. Chem. Soc. 1998, 120, 12289–12296. DOI: 10.1021/ja971637u.
  • Veerakumar, P.; Thanasekaran, P.; Lu, K. L.; Liu, S. B.; Rajagopal, S. Functionalized Silica Matrices and Palladium: A Versatile Heterogeneous Catalyst for Suzuki, Heck, and Sonogashira Reactions. ACS Sustain. Chem. Eng. 2017, 5, 6357–6376. DOI: 10.1021/acssuschemeng.7b00921.
  • Sharma, Y. O.; Degani, M. S. The Heck Reaction of Aryl Bromides: A Green Protocol for Synthesis of 2-Ethylhexyl-4-Methoxy Cinnamate. Green Chem. Lett. Rev. 2010, 3, 201–204. DOI: 10.1080/17518251003705520.
  • Yang, C.; Lee, H. M.; Nolan, S. P. Highly Efficient Heck Reactions of Aryl Bromides with N-Butyl Acrylate Mediated by a Palladium/Phosphine-Imidazolium Salt System. Org. Lett. 2001, 3, 1511–1514. DOI: 10.1021/ol015827s.
  • Puthiaraj, P.; Pitchumani, K. Palladium Nanoparticles Supported on Triazine Functionalised Mesoporous Covalent Organic Polymers as Efficient Catalysts for Mizoroki-Heck Cross Coupling Reaction. Green Chem. 2014, 16, 4223–4233. DOI: 10.1039/C4GC00412D.
  • El-Ghayoury, A.; Schenning, A. P. H. J.; Van Hal, P. A.; Van Duren, J. K. J.; Janssen, R. A. J.; Meijer, E. W. Supramolecular Hydrogen-Bonded Oligo(p-Phenylene Vinylene) Polymers. Angew. Chem. Int. Ed. 2001, 40, 3660–3663. DOI: 10.1002/1521-3773(20011001)40:19<3660::AID-ANIE3660>3.0.CO;2-B.
  • Yamauchi, M.; Kubota, S.; Karatsu, T.; Kitamura, A.; Ajayaghosh, A.; Yagai, S. Guided Supramolecular Polymerization of Oligo(p-Phenylenevinylene) Functionalized Bismelamines. Chem. Commun. 2013, 49, 4941–4943. DOI: 10.1039/c3cc41461b.
  • Yagai, S.; Kubota, S.; Iwashima, T.; Kishikawa, K.; Nakanishi, T.; Karatsu, T.; Kitamura, A. Supramolecular Polymerization and Polymorphs of Oligo(p-Phenylene Vinylene)-Functionalized Bis- and Monoureas. Chem. Eur. J. 2008, 14, 5246–5257. DOI: 10.1002/chem.200701782.
  • Du, Z. T.; Liu, R.; Wang, J. R.; Li, A. P. Synthesis of a Diamino Substituted Terphenyldivinyl Chromophore. Molecules 2009, 14, 2111–2117. DOI: 10.3390/molecules14062111.
  • Denny, W. A.; Atwell, G. J.; Baguley, B. C.; Cain, B. F. Potential Antitumor Agents. 29. Quantitative Structure-Activity Relationships for the Antileukemic Bisquaternary Ammonium Heterocycles. J. Med. Chem. 1979, 22, 134–150. DOI: 10.1021/jm00188a005.
  • Caruso, U.; Casalboni, M.; Fort, A.; Fusco, M.; Panunzi, B.; Quatela, A.; Roviello, A.; Sarcinelli, F. New Side-Chain Polyurethanes with Highly Conjugated Push-Pull Chromophores for Second Order NLO Applications. Opt. Mater. 2005, 27, 1800–1810. DOI: 10.1016/j.optmat.2004.11.009.
  • Roviello, A.; Borbone, F.; Carella, A.; Diana, R.; Roviello, G.; Panunzi, B.; Ambrosio, A.; Maddalena, P. High Quantum Yield Photoluminescence of New Polyamides Containing Oligo-PPV Amino Derivatives and Related Oligomers. J. Polym. Sci. A Polym. Chem. 2009, 47, 2677–2689. DOI: 10.1002/pola.23353.
  • Estrada, S. E.; Ochoa-Puentes, C.; Sierra, C. A. Phenylenevinylene Oligomers by Mizoroki-Heck Cross Coupling Reaction. Structural and Optoelectronic Characterization. J. Mol. Struct. 2017, 1133, 448–457. DOI: 10.1016/j.molstruc.2016.12.032.
  • Gabr, Y. Studies on the Copolymerization of 4-Aminostyrene with 4-Nitro- and 2,4-Dinitrostyrene. Acta Chim. Slov. 2007, 54, 818–824.
  • Saikachi, H.; Muto, H. Reaction of Aromatic p-Substituted Biphosphoranes with Bisaldehydes. Chem. Pharm. Bull. 1971, 19, 959–969. DOI: 10.1248/cpb.19.959.
  • Channe Gowda, D.; Mahesh, B.; Gowda, S. Zinc-Catalyzed Ammonium Formate Reductions: Rapid and Selective Reduction of Aliphatic and Aromatic Nitro Compounds. Indian J. Chem. Sect. B Org. Med. Chem. 2001, 40, 75–77.
  • Howard, J. L.; Cao, Q.; Browne, D. L. Mechanochemistry as an Emerging Tool for Molecular Synthesis: What Can It Offer? Chem. Sci. 2018, 9, 3080–3094. DOI: 10.1039/C7SC05371A.
  • Shahabi, D.; Tavakol, H. One-Pot Synthesis of Quinoline Derivatives Using Choline Chloride/Tin (II) Chloride Deep Eutectic Solvent as a Green Catalyst. J. Mol. Liq. 2016, 220, 324–328. DOI: 10.1016/j.molliq.2016.04.094.
  • Murata, T.; Gondo, Y.; Itabashi, K. The Reduction of Aromatic Nitro Compounds with Hydrogen Sulfide. J. Synth. Org. Chem. JPN. 1977, 35, 61–63. DOI: 10.5059/yukigoseikyokaishi.35.61.
  • Cope, O. J.; Brown, R. K. The Reduction of Nitrobenzene by Sodium Sulphide in Aqueous Ethanol. Can. J. Chem. 1961, 39, 1695–1710. DOI: 10.1139/v61-217.
  • Boys, M. L.; Downs, V. L. Preparation of Primary Thioamides from Nitriles Using Sodium Hydrogen Sulfide and Diethylamine Hydrochloride. Synth. Commun. 2006, 36, 295–298. DOI: 10.1080/00397910500377099.
  • Patel, K. N.; Bedekar, A. V. One-Pot Synthesis and Study of Spectroscopic Properties of Oligo(Phenylenevinylene)S. Tetrahedron Lett. 2015, 56, 6617–6621. DOI: 10.1016/j.tetlet.2015.10.033.
  • Hammam, E.; Basahi, J.; Ismail, I.; Hassan, I.; Almeelbi, T. The Role of Hydrogen Bonding in the Fluorescence Quenching of 2,6-Bis((E)-2-(Benzoxazol-2-Yl)Vinyl)Naphthalene (BBVN) in Methanol. Spectrochim. Acta – Part A Mol. Biomol. Spectrosc. 2017, 173, 681–686. DOI: 10.1016/j.saa.2016.10.018.
  • Zhou, Y.; He, Q.; Yang, Y.; Zhong, H.; He, C.; Sang, G.; Liu, W.; Yang, C.; Bai, F.; Li, Y. Binaphthyl-Containing Green- and Red-Emitting Molecules for Solution-Processable Organic Light-Emitting Diodes. Adv. Funct. Mater. 2008, 18, 3299–3306. DOI: 10.1002/adfm.200800375.
  • Brouwer, A. M. Standards for Photoluminescence Quantum Yield Measurements in Solution (IUPAC Technical Report). Pure Appl. Chem. 2011, 83, 2213–2228. DOI: 10.1351/PAC-REP-10-09-31.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.