Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 11
211
Views
16
CrossRef citations to date
0
Altmetric
SYNTHETIC COMMUNICATIONS REVIEWS

Chitosan-SO3H (CTSA) an efficient and biodegradable polymeric catalyst for the synthesis of 4,4′-(arylmethylene)bis(1H-pyrazol-5-ol) and α-amidoalkyl-β-naphthol’s

ORCID Icon, &
Pages 1696-1711 | Received 19 Jan 2020, Published online: 24 Apr 2020

References

  • (a) Hara, M.; Yoshida, T.; Takagaki, A.; Takata, T.; Kondo, J. N.; Hayashi, S.; Domen, K. A Carbon Material as a Strong Protonic Acid. Angew. Chem. Int. Ed. 2004, 43, 2955–2958. DOI: 10.1002/anie.200453947. (b) Nakajima, K.; Tomita, I.; Hara, M.; Hayashi, S.; Domen, K.; Kondo, J. N. Development of Highly Active SO3H-Modified Hybrid Mesoporous Catalyst. Catal. Today. 2006, 116, 151–156. DOI: 10.1016/j.cattod.2006.01.022. (c) Prabhavathi Devi, B. L. A.; Gangadhar, K. N.; Sai Prasad, P. S.; Jagannadh, B.; Prasad, R. B. N. A Glycerol-Based Carbon Catalyst for the Preparation of Biodiesel. Chem. Sus. Chem. 2009, 2, 617–620. DOI: 10.1002/cssc.200900097. (d) Shaabani, A.; Maleki, A. Cellulose Sulfuric Acid as a Bio-Supported and Recyclable Solid Acid Catalyst for the One-Pot Three-Component Synthesis of α-Amino Nitriles. Appl. Catal. A Gen. 2007, 331, 149–151. DOI: 10.1016/j.apcata.2007.07.021. (e) Shaabani, A.; Rahmati, A.; Badri, Z. Sulfonated Cellulose and Starch: New Biodegradable and Renewable Solid Acid Catalysts for Efficient Synthesis of Quinolines. Catal. Commun. 2008, 9, 13–16. DOI: 10.1016/j.catcom.2007.05.021. (f) Kumar, A.; Gupta, G.; Srivastava, S. Diversity Oriented Synthesis of Pyrrolidines via Natural Carbohydrate Solid Acid Catalyst. J. Comb. Chem. 2010, 12, 458–462. DOI: 10.1021/cc100007a.
  • (a) Perumal, R.; Bathrinarayanan, B.; Ghashang, M.; Mansoor, S. An Efficient One-Pot Synthesis of 7,7-Dimethyl-2-(2-Oxo-2H-Chromen-3-yl)-4-Aryl-7,8-Dihydroquinolin-5(6H)-One Derivatives Using Chitosan–so 3 H as Biodegradable Organocatalyst. J. Heterocyclic Chem. 2019, 56, 947–955. DOI: 10.1002/jhet.3473. (b) Safari, J.; Zarnegar, Z.; Sadeghi, M.; Azizi, F. Chitosan-SO3H: An Efficient and Biodegradable Catalyst for the Green Syntheses of 1,4-Dihydropyridines. Curr. Org. Chem. 2016, 20, 2926–2932. DOI: 10.2174/1385272820666160805112208. (c) Reddy, B. V. S.; Venkateswarlu, A.; Reddy, G. N.; Reddy, Y. V. R. Chitosan-SO 3 H: An Efficient, Biodegradable, and Recyclable Solid Acid for the Synthesis of Quinoline Derivatives via Friedländer Annulation. Tetrahedron Lett. 2013, 54, 5767–5770. DOI: 10.1016/j.tetlet.2013.07.165.
  • (a) Lim, S. H.; Hudson, S. M. Synthesis and Antimicrobial Activity of a Water-Soluble Chitosan Derivative with a Fiber-Reactive Group. Carbohydr. Res. 2004, 339, 313–319. DOI: 10.1016/j.carres.2003.10.024. (b) Bodnar, M.; Hartmann, J. F.; Borbely, J. Preparation and Characterization of Chitosan-Based Nanoparticles. Biomacromolecules 2005, 6, 2521–2527. DOI: 10.1021/bm0502258. (c) Guibal, E. Heterogeneous Catalysis on Chitosan-Based Materials: A Review. Prog. Polym. Sci. 2005, 30, 71–109. DOI: 10.1016/j.progpolymsci.2004.12.001. (d) Sinha, V. R.; Singla, A. K.; Wadhawan, S.; Kaushik, R.; Kumria, R.; Bansal, K.; Dhawan, S. Chitosan Microspheres as a Potential Carrier for Drugs. Int. J. Pharm. 2004, 274, 1–33. DOI: 10.1016/j.ijpharm.2003.12.026.
  • Mohammadi, R.; Kassaee, M. Z. Sulfochitosan Encapsulated nano-Fe3O4 as an Efficient and Reusable Magnetic Catalyst for Green Synthesis of 2-Amino-4H-Chromen-4-yl Phosphonates. J. Mol. Catal. A Chem. 2013, 380, 152–158. DOI: 10.1016/j.molcata.2013.09.027.
  • (a) Mariappan, G.; Saha, B. P.; Sutharson, L.; Singh, Ankit.; Garg, S.; Pandey, L.; Kumar, D. Analgesic, anti-Inflammatory, Antipyretic and Toxicological Evaluation of Some Newer 3-Methyl Pyrazolone Derivatives. Saudi Pharm. J. 2011, 19, 115–122. DOI: 10.1016/j.jsps.2011.01.003. (b) Uramaru, N.; Shigematsu, H.; Toda, A.; Eyanagi, R.; Kitamura, S.; Ohta, S. Design, Synthesis, and Pharmacological Activity of Nonallergenic Pyrazolone-Type Antipyretic Analgesics. J. Med. Chem. 2010, 53, 8727–8733. DOI: 10.1021/jm101208x.
  • Sujatha, K.; Shanthi, G.; Selvam, N. P.; Manoharan, S.; Perumal, P. T.; Rajendran, M. Synthesis and Antiviral Activity of 4,4′-(Arylmethylene)Bis(1H-Pyrazol-5-Ols) against Peste Des Petits Ruminant Virus (PPRV). Bioorganic Med. Chem. Lett. 2009, 19, 4501–4503. DOI: 10.1016/j.bmcl.2009.02.113.
  • Bailey, D. M.; Hansen, P. E.; Hlavac, A. G.; Baizman, E. R.; Pearl, J.; DeFelice, A. F.; Feigenson, M. E. 3, 4-Diphenyl-1H-Pyrazole-1-Propanamine Antidepressants. J. Med. Chem. 1985, 28, 256–260. DOI: 10.1021/jm00380a020.
  • Braña, M.; Gradillas, A.; Ovalles, A. G.; López, B.; Acero, N.; Llinares, F.; Mingarro, D. M. Synthesis and Biological Activity of N,N-Dialkylaminoalkyl-Substituted Bisindolyl and Diphenyl Pyrazolone Derivatives. Bioorganic Med. Chem. 2006, 14, 9–16. DOI: 10.1016/j.bmc.2005.09.059.
  • Kim, K. R.; Kwon, J. L.; Kim, J. S.; No, Z.; Kim, H. R.; Cheon, H. G. EK-6136 (3-Methyl-4-(O-Methyl-Oximino)-1-Phenylpyrazolin-5-One): A Novel Cdc25B Inhibitor with Antiproliferative Activity. Eur. J. Pharmacol. 2005, 528, 37–42. DOI: 10.1016/j.ejphar.2005.10.027.
  • (a) Manojkumar, P.; Ravi, T. K.; Gopalakrishnan, S. Antioxidant and Antibacterial Studies of Arylazopyrazoles and Arylhydrazonopyrazolones Containing Coumarin Moiety. Eur. J. Med. Chem. 2009, 44, 4690–4694. DOI: 10.1016/j.ejmech.2009.07.004. (b) Parmar, N.; Teraiya, S.; Patel, R.; Barad, H.; Jajda, H.; Thakkar, V. Synthesis, Antimicrobial and Antioxidant Activities of Some 5-Pyrazolone Based Schiff Bases. J. Saudi Chem. Soc. 2015, 19, 36–41. DOI: 10.1016/j.jscs.2011.12.014.
  • (a) Venkat Ragavan, R.; Vijayakumar, V.; Suchetha Kumari, N. Synthesis of Some Novel Bioactive 4-Oxy/Thio Substituted-1H-Pyrazol-5(4H)-Ones via Efficient Cross-Claisen Condensation. Eur. J. Med. Chem. 2009, 44, 3852–3857. DOI: 10.1016/j.ejmech.2009.04.010. (b) Liu, Y.; He, G.; Kai, C.; Li, Y.; Zhu, H. Synthesis, Crystal Structure, and Fungicidal Activity of Novel 1,5‐Diaryl‐1H‐Pyrazol‐3‐Oxy Derivatives Containing Oxyacetic Acid or Oxy(2‐Thioxothiazolidin‐3‐yl)Ethanone Moieties. J. Heterocyclic Chem. 2012, 49, 1370–1375. DOI: 10.1002/jhet.1045.
  • Sobhani, S.; Hasaninejad, A. R.; Maleki, M. F.; Parizi, Z. P. Tandem Knoevenagel-Michael Reaction of 1-Phenyl-3-Methyl-5-Pyrazolone with Aldehydes Using 3-Aminopropylated Silica Gel as an Efficient and Reusable Heterogeneous Catalyst. Synth. Commun. 2012, 42, 2245–2255. DOI: 10.1080/00397911.2011.555589.
  • Niknam, K.; Saberi, D.; Sadegheyan, M.; Deris, A. Silica-Bonded S-Sulfonic Acid: An Efficient and Recyclable Solid Acid Catalyst for the Synthesis of 4,4′-(Arylmethylene)Bis(1H-Pyrazol-5-Ols). Tetrahedron Lett. 2010, 51, 692–694. DOI: 10.1016/j.tetlet.2009.11.114.
  • Kuarm, B. S.; B. Xanthan Sulfuric Acid, R. An Efficient, Biosupported, and Recyclable Solid Acid Catalyst for the Synthesis of 4,4-(arylmethylene)bis(1H-pyrazol-5-ols). Synth. Commun. 2012, 42, 2382. DOI: 10.1080/00397911.2011.557516.
  • Phatangare, K.; Padalkar, V.; Gupta, V.; Patil, V.; Umape, P. G.; Sekar, N. Phosphomolybdic Acid: An Efficient and Recyclable Solid Acid Catalyst for the Synthesis of 4,4′-(Arylmethylene)Bis(1hpyrazol-5-Ols). Synth. Commun. 2012, 42, 1349–1358. DOI: 10.1080/00397911.2010.539759.
  • Gouda, M. A.; Abu-Hashem, A. A. An Eco-Friendly Procedure for the Efficient Synthesis of Arylidinemalononitriles and 4,4′-(Arylmethylene)Bis(3-Methyl-1-Phenyl-1H-Pyrazol-5-Ols) in Aqueous Media. Green Chem. Lett. Rev. 2012, 5, 203–209. DOI: 10.1080/17518253.2011.613858.
  • Hasaninejad, A.; Shekouhy, M.; Zare, A.; Hoseini Ghattali, S. M. S.; Golzar, N. Iranian Chemical Society PEG-SO 3 H as a New, Highly Efficient and Homogeneous Polymeric Catalyst for the Synthesis of Bis (Indolyl) Methanes and 4, 4′-(Arylmethylene) -Bis (3-Methyl-1-Phenyl-1 H-Pyrazol-5-ol) s in Water. JICS. 2011, 8, 411–423. DOI: 10.1007/BF03249075.
  • Mosaddegh, E. L. A. H. E. H.; Hassankhani, A. S. A. D. O. L. L. A. H.; Baghizadeh, A. M. I. N. Cellulose Sulfuric Acid as a New, Biodegradable and Environmentally Friendly Biopolymer for Synthesis of 4,4′-(Arylmethylene)Bis(3-Methyl-1-Phenyl-1H-Pyrazol-5-Ols). J. Chil. Chem. Soc. 2010, 55, 419–420. DOI: 10.4067/S0717-97072010000400001.
  • Sobhani, S.; Nasseri, R.; Honarmand, M. 2-Hydroxyethylammonium Acetate as a Reusable and Cost-Effective Ionic Liquid for the Efficient Synthesis of Bis(Pyrazolyl)Methanes and 2-Pyrazolyl-1-Nitroalkanes. Can. J. Chem. 2012, 90, 798–804. DOI: 10.1139/v2012-059.
  • Zhou, Z.; Zhang, Y. An Eco-Friendly One-Pot Synthesis of 4,4′-(Arylmethylene)Bis(1H-Pyrazol-5-Ols) Using [Et3NH][HSO4] as a Recyclable Catalyst. J. Chil. Chem. Soc. 2015, 60, 2992–2996. DOI: 10.4067/S0717-97072015000300003.
  • Moosavi-Zare, A. R.; Zolfigol, M. A.; Noroozizadeh, E.; Khaledian, O.; Shaghasemi, B. S. Cyclocondensation-Knoevenagel–MichaelDomino Reaction of Phenyl Hydrazine, Acetoacetate Derivatives and Aryl Aldehydes over Acetic Acid Functionalized Ionic Liquid. Res. Chem. Intermed. 2016, 42, 4759–4772. DOI: 10.1007/s11164-015-2317-6.
  • Moosavi-Zare, A. R.; Zolfigol, M. A.; Zarei, M.; Zare, A.; Khakyzadeh, V.; Hasaninejad, A. Design, Characterization and Application of New Ionic Liquid 1-Sulfopyridinium Chloride as an Efficient Catalyst for Tandem Knoevenagel – Michael Reaction of 3-Methyl-1-Phenyl-1H-Pyrazol-5(4H)-One with Aldehydes. Appl. Catal. A Gen. 2013, 467, 61–68. DOI: 10.1016/j.apcata.2013.07.004.
  • Karimi-Jaberi, Z.; Pooladian, B.; Moradi, M.; Ghasemi, E. 1, 3, 5-tris(Hydrogensulfato) Benzene: A New and Efficient Catalyst for Synthesis of 4,4′-(Arylmethylene) Bis(1H-Pyrazol-5-ol) Derivatives. Chin. J. Catal. 2012, 33, 1945–1949. DOI: 10.1016/S1872-2067(11)60477-4.
  • Shen, A. Y.; Tsai, C. T.; Chen, C. L. Synthesis and Cardiovascular Evaluation of N-Substituted 1- Aminomethyl-2-Naphthols. Eur. J. Med. Chem. 1999, 34, 877–882. DOI: 10.1016/S0223-5234(99)00204-4.
  • Damodiran, M.; Panneer Selvam, N.; Perumal, P. T. Synthesis of Highly Functionalized Oxazines by Vilsmeier Cyclization of Amidoalkyl Naphthols. Tetrahedron Lett. 2009, 50, 5474–5478. DOI: 10.1016/j.tetlet.2009.07.051.
  • (a) Haneishi, T.; Okazaki, T.; Hata, T.; Tamura, C.; Nomura, M.; Naito, N.; Seki, I.; Arai, M. Oxazinomycin, a New Carbon-Linked Nugleoside Antibiotic. J. Antibiot. 1971, 24, 797–799. DOI: 10.7164/antibiotics.24.797. (b) Sasaki, K.; Kusakabe, Y.; Esumi, S. The Structure of Minimycin, a Novel Carbon-Linked Nucleoside Antibiotic Related to β Pseudouridine. J. Antibiot. 1972, 25, 151–154. DOI: 10.7164/antibiotics.25.151.
  • Johnson, P. Y.; Silver, R. B. The Synthesis and Antitumor Properties of a 6-Alkoxytetrahydrooxazine. J. Heterocyclic Chem. 1973, 10, 1029–1030. DOI: 10.1002/jhet.5570100628.
  • Lesher, G. Y.; Surrey, A. R. A New Method for the Preparation of 3-Substituted-2-Oxazolidones. J. Am. Chem. Soc. 1955, 77, 636–641. DOI: 10.1021/ja01608a032.
  • Mosher, H. S.; Frankel, M. B.; Gregory, M. Heterocyclic Diphenylmethane Derivatives. J. Am. Chem. Soc. 1953, 75, 5326–5328. DOI: 10.1021/ja01117a054.
  • Peglion, J. L.; Vian, J.; Goument, B.; Despaux, N.; Audinot, V.; Millan, M. J. Tetraqcyclic Analogues of [+]-S 14297: Synthesis and Determination of Affinity and Selectivity at Cloned Human Dopamine D3VsD2 Receptor. Bioorg. Med. Chem. Lett. 1997, 7, 881–886. DOI: 10.1016/S0960-894X(97)00126-1.
  • Benedini, F.; Bertolini, G.; Cereda, R.; Dona, G.; Gromo, G.; Levi, S.; Mizrahi, J.; Sala, A. New Antianginal Nitro Esters with Reduced Hypotensive Activity. Synthesis and Pharmacological Evaluation of 3-[(Nitrooxy)Alkyl]-2H-1,3-Benzoxazin-4(3H)-Ones. J. Med. Chem. 1995, 38, 130–136. DOI: 10.1021/jm00001a018.
  • Kantevari, S.; Vuppalapati, S. V. N.; Nagarapu, L. Montmorillonite K10 Catalyzed Efficient Synthesis of Amidoalkyl Naphthols under Solvent Free Conditions. Catal. Commun. 2007, 8, 1857–1862. DOI: 10.1016/j.catcom.2007.02.022.
  • Selvam, N. P.; Perumal, P. T. A New Synthesis of Acetamido Phenols Promoted by Ce(SO4)2. Tetrahedron Lett. 2006, 47, 7481–7483. DOI: 10.1016/j.tetlet.2006.08.038.
  • Khazaei, A.; Zolfigol, M. A.; Moosavi-Zare, A. R.; Zare, A.; Parhami, A.; Khalafi-Nezhad, A. Trityl Chloride as an Efficient Organic Catalyst for the Synthesis of 1-Amidoalkyl-2-Naphtols in Neutral Media at Room Temperature. Appl. Catal. A Gen. 2010, 386, 179–187. DOI: 10.1016/j.apcata.2010.07.057.
  • Gawand, P.; Deokar, H.; Langi, B.; Yadav, A.; Chaskar, A. H3Mo12O40P-Catalyzed OnePot Synthesis of Amidoalkyl Naphthols. Synth. Commun. 2009, 39, 4171–4179. DOI: 10.1080/00397910902885541.
  • Srihari, G.; Nagaraju, M.; Murthy, M. M. Solvent-Free One-Pot Synthesis of Amidoalkyl Naphthols Catalyzed by Silica Sulfuric Acid. Helvet. Chim. Acta. 2007, 90, 1497–1504. DOI: 10.1002/hlca.200790156.
  • Mahdavinia, G. H.; Bigdeli, M. A.; Heravi, M. M. Silica Supported Perchloric Acid (HClO4 -SiO2): A Mild, Reusable and Highly Efficient Heterogeneous Catalyst for the Synthesis of Amidoalkyl Naphthols. Chinese Chem. Lett. 2008, 19, 1171–1174. DOI: 10.1016/j.cclet.2008.06.048.
  • Kundu, D.; Majee, A.; Hajra, A. Zwitterionic-Type Molten Salt: An Efficient Mild Organocatalyst for Synthesis of 2-Amidoalkyl and 2-Carbamatoalkyl Naphthols. Catal. Commun. 2010, 11, 1157–1159. DOI: 10.1016/j.catcom.2010.06.001.
  • Zhang, Q.; Luo, J.; Wei, Y. A Silica Gel Supported Dual Acidic Ionic Liquid: An Efficient and Recyclable Heterogeneous Catalyst for the One-Pot Synthesis of Amidoalkyl Naphthols. Green Chem. 2010, 12, 2246. DOI: 10.1039/c0gc00472c.
  • Gupta, A.; Kour, D.; Gupta, V.; Kapoor, K. Graphene Oxide Mediated Solvent-Free Three Component Reaction for the Synthesis of 1-Amidoalkyl-2-Naphthols and 1,2-Dihydro-1-Arylnaphth[1,2-e][1,3]Oxazin-3-Ones. Tetrahedron Lett. 2016, 57, 4869–4872. DOI: 10.1016/j.tetlet.2016.09.067.
  • Suryawanshi, N. S.; Jain, P. Bronsted Acidic Ionic Liquid as an Efficient and Reusable Catalyst for One-Pot Synthesis of 1-Amidoalkyl 2-Naphthols under Solvent-Free Conditions. Orient. J. Chem. 2010, 26, 1525.
  • Kiyani, H.; Darbandi, H.; Mosallanezhad, A.; Ghorbani, F. 2-Hydroxy-5- Sulphonic Acid: An Efficient Organo Catalyst for Three Component Synthesis of 1-Amidoalkyl 2-Naphthols and 3,4-di Substituted Isoxal-5(4H)-One. Res. Chem. Intermed. 2015, 41, 7561–7579. DOI: 10.1007/s11164-014-1844-x.
  • Khazaei, A.; Abbasi, F.; Moosavi-Zare, A. R. Moosavi-Zare, AR. Tandem cyclocondensation-Knoevenagel-Michael Reaction of Phenyl Hydrazine, Acetoacetate Derivatives and Arylaldehydes. New J. Chem. 2014, 38, 5287–5292. DOI: 10.1039/C4NJ01079E.
  • Zhou, Z.; Zhang, Y. An Efficient and Green One-Pot Three-Component Synthesis of 4,4′-(Arylmethylene)Bis(1H-Pyrazol-5-ol)s Catalyzed by 2-Hydroxy Ethylammonium Propionate. Green Chem. Lett. Rev. 2014, 7, 18–23. DOI: 10.1080/17518253.2014.894142.
  • Khaligh, N. G.; Hamid, S. B. A.; Titinchi, S. J. J. N-Methylimidazolium Perchlorate as a New Ionic Liquid for the Synthesis of Bis(Pyrazol-5-ol)s under Solvent-Free Conditions. Chinese Chem. Lett. 2016, 27, 104–108. DOI: 10.1016/j.cclet.2015.07.027.
  • Baghernejad, M.; Niknam, K. Synthesis of 4,4′-(Arylmethylene)Bis(1H-Pyrazol-5-Ols) Using Silica-Bonded Ionic Liquid as Recyclable Catalyst. Int. J. Chem. 2012, 4, 52. DOI: 10.5539/ijc.v4n3p52.
  • Zang, H.; Su, Q.; Mo, Y.; Cheng, B. Ionic Liquid under Ultrasonic Irradiation towards a Facile Synthesis of Pyrazolonederivatives. Ultrason. Sonochem. 2011, 18, 68–72. DOI: 10.1016/j.ultsonch.2010.08.001.
  • Das, B.; Kumar, D. N.; Laxminarayana, K.; Ravikanth, B. Perchloric Acid – Silica (HClO4 · SiO2) -Catalyzed Synthesis of 14-Alkyl- or 14-Aryl-14H-Dibenzo [a, j] Xanthenes and N- [(2-Hydroxynaphthalen-1- yl)Methyl]Amides.). HCA. 2007, 90, 1330–1334. DOI: 10.1002/hlca.200790134.
  • Moeinpour, F.; Dorostkar-Ahmadi, N.; Sardashti-Birjandi, A.; Khojastehnezhad, A.; Vafaei, M. Multicomponent Preparation of 1-Amidoalkyl-2-Naphthols Using Silica-Supported Molybdenum Oxide (MoO3/SiO2) as a Mild and Recyclable Catalyst. Res. Chem. Intermed. 2014, 40, 3145–3152. DOI: 10.1007/s11164-013-1160-x.
  • An, L. T.; Lu, X. H.; Ding, F. Q.; Jiang, W. Q.; Zou, J. P. Polymer-Supported Sulphonic Acid Catalyzed Three-Component One-Pot Synthesis of α-Amidoalkyl-β-Naphthols. Chin. J. Chem. 2008, 26, 2117–2119. DOI: 10.1002/cjoc.200890378.
  • Muskawar, P. N.; Senthil Kumar, S.; Bhagat, P. R. Carboxyl-Functionalized Ionic Liquids Based on Benzimidazolium Cation: Study of Hammett Values and Catalytic Activity towards One-Pot Synthesis of 1-Amidoalkyl Naphthols. J. Mol. Catal. A Chem. 2013, 380, 112–117. DOI: 10.1002/cjoc.200890378.
  • Pourmousavi, S. A.; Moghimi, P.; Ghorbani, F.; Zamani, M. Sulfonated Polynaphthalene as an Effective and Reusable Catalyst for the One-Pot Preparation of Amidoalkyl Naphthols: DFT and Spectroscopic Studies. J. Mol. Struct. 2017, 1144, 87–102. DOI: 10.1016/j.molstruc.2017.05.010.
  • Darbandi, H.; Kiyani, H. Adipic Acid as a Biodegradable Solid Acid Catalyst for One-Pot, Three Component Synthesis of 1-Amidoalkyl-2-Napthols. Curr. Organocatal. 2019, 7, 34–43. DOI: 10.2174/2213337206666190515091358.
  • Kiyani, H.; Darbandi, H. One-Pot Three-Component Synthesis of 1-Amidoalkyl-2-Naphthols in the Presence of phthalimide-N-Sulfonic Acid. Bul Chem. Commun. 2017, 49, 562.
  • Kiyani, H.; Pourali, A.; Banari, H. Efficient Synthesis of Bis (Indolyl)Methane, Bis Pyrazoles and Biscoumarin Using 4-Sulphopthalic Acid. Res. Chem. Intermed. 2017, 43, 1635–1649. DOI: 10.1007/s11164-016-2720-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.