Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 12
263
Views
2
CrossRef citations to date
0
Altmetric
SYNTHETIC COMMUNICATIONS REVIEWS

An easy-to-operate n-carbonylation of indoles with diaryl carbonates as reagent and Na2CO3 as catalyst

&
Pages 1854-1862 | Received 07 Nov 2019, Published online: 06 May 2020

References

  • (a) Kochanowska-Karamyan, A. J.; Hamann, M. T. Marine Indole Alkaloids: Potential New Drug Leads for the Control of Depression and Anxiety. Chem. Rev. 2010, 110, 4489–4497. DOI: 10.1021/cr900211p. (b) Lancianesi, S.; Palmieri, A.; Petrini, M. Synthetic Approaches to 3-(2-Nitroalkyl) Indoles and Their Use to Access Tryptamines and Related Bioactive Compounds. Chem. Rev. 2014, 114, 7108–7149. DOI: 10.1021/cr400676v.
  • (a) Bur, S. K.; Padwa, A. The Pummerer Reaction: Methodology and Strategy for the Synthesis of Heterocyclic Compounds. Chem. Rev. 2004, 104, 2401–2432. DOI: 10.1021/cr020090l. (b) Mąkosza, M.; Wojciechowski, K. Chem. Rev. 2004, 104, 2631. DOI: 10.1021/cr020086+. (c) Busto, E.; Gotor-Fernández, V.; Gotor, V. Hydrolases in the Stereoselective Synthesis of N -Heterocyclic Amines and Amino Acid Derivatives. Chem. Rev. 2011, 111, 3998–4035. DOI: 10.1021/cr100287w. (d) Zhang, H.; Hu, R.B.; Liu, N.; Li, S.X.; Yang, S.-D. Dearomatization of Indoles via Palladium-Catalyzed Allylic C–H Activation. Org. Lett. 2016, 18, 28–31. DOI: 10.1021/acs.orglett.5b03053. (e) Morimoto, N.; Morioku, K.; Suzuki, H.; Takeuchi, Y.; Nishina, Y. Lewis Acid and Fluoroalcohol Mediated Nucleophilic Addition to the C2 Position of Indoles. Org. Lett. 2016, 18, 2020–2023. DOI: 10.1021/acs.orglett.6b00629. (f) Petrone, D. A.; Kondo, M.; Zeidan, N.; Lautens, M. Pd(0)-Catalyzed Dearomative Diarylation of Indoles. Chem. Eur. J. 2016, 22, 5684–5691. DOI: 10.1002/chem.201600118.
  • (a) Bras, J. L.; Muzart, J. Intermolecular Dehydrogenative Heck Reactions. Chem. Rev. 2011, 111, 1170–1214. DOI: 10.1021/cr100209d. (b) Liu, C.; Yuan, J.; Gao, M.; Tang, S.; Li, W.; Shi, R.; Lei, A. Oxidative Coupling between Two Hydrocarbons: An Update of Recent C–H Functionalizations. Chem. Rev. 2015, 115, 12138–12204. DOI: 10.1021/cr500431s. (c) Yang, Y.; Lan, J.; You, J. Oxidative C–H/C–H Coupling Reactions between Two (Hetero)Arenes. Chem. Rev. 2017, 117, 8787–8863. DOI: 10.1021/acs.chemrev.6b00567.
  • (a) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Rhodium-Catalyzed C−C Bond Formation via Heteroatom-Directed C − H Bond Activation. Chem. Rev. 2010, 110, 624–655. DOI: 10.1021/cr900005n. (b) Hummel, J. R.; Boerth, J. A.; Ellman, J. A. Transition-Metal-Catalyzed C–H Bond Addition to Carbonyls, Imines, and Related Polarized π Bonds. Chem. Rev. 2017, 117, 9163–9227. DOI: 10.1021/acs.chemrev.6b00661.
  • (a) Cacchi, S.; Fabrizi, G. Synthesis and Functionalization of Indoles through Palladium-Catalyzed Reactions †. Chem. Rev. 2005, 105, 2873–2920. DOI: 10.1021/cr040639b. (b) Shiri, M. Indoles in Multicomponent Processes (MCPs). Chem. Rev. 2012, 112, 3508–3549. DOI: 10.1021/cr2003954. (c) Boyarskiy, V. P.; Ryabukhin, D. S.; Bokach, N. A.; Vasilyev, A. V. Alkenylation of Arenes and Heteroarenes with Alkynes. Chem. Rev. 2016, 116, 5894–5986. DOI: 10.1021/acs.chemrev.5b00514.
  • (a) Kuwano, R.; Sato, K.; Kurokawa, T.; Karube, D.; Ito, Y. Catalytic Asymmetric Hydrogenation of Heteroaromatic Compounds, Indoles. J. Am. Chem. Soc. 2000, 122, 7614–7615. DOI: 10.1021/ja001271c. (b) Wang, D.-S.; Chen, Q.-A.; Li, W.; Yu, C.-B.; Zhou, Y.-G.; Zhang, X. Pd-Catalyzed Asymmetric Hydrogenation of Unprotected Indoles Activated by Brønsted Acids. J. Am. Chem. Soc. 2010, 132, 8909–8911. DOI: 10.1021/ja103668q. (c) Duan, Y.; Li, L.; Chen, M.-W.; Yu, C.-B.; Fan, H.-J.; Zhou, Y.-G. Homogenous Pd-Catalyzed Asymmetric Hydrogenation of Unprotected Indoles: Scope and Mechanistic Studies. J. Am. Chem. Soc. 2014, 136, 7688–7700. DOI: 10.1021/ja502020b.
  • (a) Guchhait, S. K.; Chaudhary, V.; Rana, V. A.; Priyadarshani, G.; Kandekar, S.; Kashyap, M. Oxidative Dearomatization of Indoles via Pd-Catalyzed C–H Oxygenation: An Entry to C2-Quaternary Indolin-3-Ones. Org. Lett. 2016, 18, 1534–1537. DOI: 10.1021/acs.orglett.6b00244. (b) Kong, L.; Wang, M.; Zhang, F.; Xu, M.; Li, Y. Copper-Catalyzed Oxidative Dearomatization/Spirocyclization of Indole-2-Carboxamides: Synthesis of 2-Spiro-Pseudoindoxyls. Org. Lett. 2016, 18, 6124–6127. DOI: 10.1021/acs.orglett.6b03131. (c) Zhou, X.-Y.; Chen, X.; Wang, L.-G. Palladium-Catalyzed Wacker-Type Oxidation of N-Boc Indoles under Mild Conditions. Synlett 2016, 27, 2742–2746. 27, DOI: 10.1055/s-0036-1588069. (d) Yarlagadda, S.; Ramesh, B.; Reddy, C.; Srinivas, R. L.; Sridhar, B.; Reddy, B. V. S. Organocatalytic Enantioselective Amination of 2-Substituted Indolin-3-Ones: A Strategy for the Synthesis of Chiral α-Hydrazino Esters. Org. Lett. 2017, 19, 170–173. DOI: 10.1021/acs.orglett.6b03473. (e) Zhou, X.-Y.; Chen, X.; Wang, L.G.; Yang, D.; Li, Z. Palladium-Catalyzed Oxidation-Hydroxylation and Oxidation-Methoxylation of N-Boc Indoles for the Synthesis of 3-Oxoindolines. Synthesis 2017, 49, 3662–3669. DOI: 10.1055/s-0036-1589032. (f) Zhou, X.-Y.; Chen, X.; Wang, L.G.; Yang, D.; Li, J.H. Ruthenium-Catalyzed Oxidative Dearomatization of Indoles for the Construction of C2-Quaternary Indolin-3-Ones. Synlett. 2018, 29, 835–839. DOI: 10.1055/s-0036-1591876.
  • (a) Gritsch, P. J.; Leitner, C.; Pfaffenbach, M.; Gaich, T. The Witkop Cyclization: A Photoinduced CH Activation of the Indole System. Angew. Chem. Int. Ed. 2014, 53, 1208–1217. DOI: 10.1002/anie.201307391. (b) Leitch, J. A.; Bhonoah, Y.; Frost, C. G. Beyond C2 and C3: Transition-Metal-Catalyzed C–H Functionalization of Indole. ACS Catal. 2017, 7, 5618–5627. DOI: 10.1021/acscatal.7b01785.
  • (a) Mann, G.; Hartwig, J. F.; Driver, M. S.; Fernández-Rivas, C. Palladium-Catalyzed C − N(sp 2 ) Bond Formation: N -Arylation of Aromatic and Unsaturated Nitrogen and the Reductive Elimination Chemistry of Palladium Azolyl and Methyleneamido Complexes. J. Am. Chem. Soc. 1998, 120, 827–828. DOI: 10.1021/ja973524g. (b) Antilla, J. C.; Klapars, A.; Buchwald, S. L. The Copper-Catalyzed N -Arylation of Indoles. J. Am. Chem. Soc. 2002, 124, 11684–11688. DOI: 10.1021/ja027433h. (c) Liu, W.-B.; Zhang, X.; Dai, L.-X.; You, S.L. Asymmetric N -Allylation of Indoles through the Iridium-Catalyzed Allylic Alkylation/Oxidation of Indolines. Angew. Chem. Int. Ed. 2012, 51, 5183–5187. DOI: 10.1002/anie.201200649. (d) Trost, B. M.; Gnanamani, E.; Hung, C.I. Controlling Regioselectivity in the Enantioselective N-Alkylation of Indole Analogues Catalyzed by Dinuclear Zinc-ProPhenol. Angew. Chem. Int. Ed. 2017, 56, 10451–10456. DOI: 10.1002/anie.201705315.
  • (a) Wang, X.; Lane, B. S.; Sames, D. Direct C-Arylation of Free (NH)-Indoles and Pyrroles Catalyzed by Ar − Rh(III) Complexes Assembled in Situ. J. Am. Chem. Soc. 2005, 127, 4996–4997. DOI: 10.1021/ja050279p. (b) Deprez, N. R.; Kalyani, D.; Krause, A.; Sanford, M. S. Room Temperature Palladium-Catalyzed 2-Arylation of Indoles. J. Am. Chem. Soc. 2006, 128, 4972–4973. DOI: 10.1021/ja060809x. (c) Potavathri, S.; Pereira, K. C.; Gorelsky, S. I.; Pike, A.; LeBris, A. P.; DeBoef, B. Regioselective Oxidative Arylation of Indoles Bearing N-Alkyl Protecting Groups: Dual C − H Functionalization via a Concerted Metalation − Deprotonation Mechanism. J. Am. Chem. Soc. 2010, 132, 14676–14681. DOI: 10.1021/ja107159b. (d) He, C.; Hou, M.; Zhu, Z.; Gu, Z. Enantioselective Synthesis of Indole-Based Biaryl Atropisomers via Palladium-Catalyzed Dynamic Kinetic Intramolecular C–H Cyclization. ACS Catal. 2017, 7, 5316–5320. DOI: 10.1021/acscatal.7b01855. (e) Muniraj, N.; Prabhu, K. R. Co(III)-Catalyzed C–H Activation: A Site-Selective Conjugate Addition of Maleimide to Indole at the C-2 Position. ACS Omega 2017, 2, 4470–4479. DOI: 10.1021/acsomega.7b00870. (f) Zhao, T.-T.; Xu, W.-H.; Zheng, Z.-J.; Xu, P.-F.; Wei, H. Directed Decarbonylation of Unstrained Aryl Ketones via Nickel-Catalyzed C–C Bond Cleavage. J. Am. Chem. Soc. 2018, 140, 586–589. DOI: 10.1021/jacs.7b11591.
  • (a) Phipps, R. J.; Grimster, N. P.; Gaunt, M. J. Cu(II)-Catalyzed Direct and Site-Selective Arylation of Indoles under Mild Conditions. J. Am. Chem. Soc. 2008, 130, 8172–8174. DOI: 10.1021/ja801767s. (b) Brand, J. P.; Charpentier, J.; Waser, J. Direct Alkynylation of Indole and Pyrrole Heterocycles. Angew. Chem. Int. Ed. 2009, 48, 9346–9349. DOI: 10.1002/anie.200905419. (c) Zhang, C.; Santiago, C. B.; Crawford, J. M.; Sigman, M. S. Enantioselective Dehydrogenative Heck Arylations of Trisubstituted Alkenes with Indoles to Construct Quaternary Stereocenters. J. Am. Chem. Soc. 2015, 137, 15668–15671. DOI: 10.1021/jacs.5b11335. (d) Modha, S. G.; Greaney, M. F. Atom-Economical Transformation of Diaryliodonium Salts: Tandem C–H and N–H Arylation of Indoles. J. Am. Chem. Soc. 2015, 137, 1416–1419. DOI: 10.1021/ja5124754. (e) Jin, L.-K.; Wan, L.; Feng, J.; Cai, C. Nickel-Catalyzed Regioselective Cross-Dehydrogenative Coupling of Inactive C(sp 3 )–H Bonds with Indole Derivatives. Org. Lett. 2015, 17, 4726–4729. DOI: 10.1021/acs.orglett.5b02217. (f) Chen, Q.-A.; Klare, H. F. T.; Oestreich, M. Brønsted Acid-Promoted Formation of Stabilized Silylium Ions for Catalytic Friedel–Crafts C–H Silylation. J. Am. Chem. Soc. 2016, 138, 7868–7871. DOI: 10.1021/jacs.6b04878.
  • (a) Lv, J.; Wang, B.; Yuan, K.; Wang, Y.; Jia, Y. Regioselective Direct C-4 Functionalization of Indole: Total Syntheses of (−)-Agroclavine and (−)-Elymoclavine. Org. Lett. 2017, 19, 3664–3667. DOI: 10.1021/acs.orglett.7b01681. (b) Bergès, J.; García, B.; Muñiz, K. An Electrophilic Bromine Redox Catalysis for the Synthesis of Indole Alkaloid Building Blocks by Selective Aliphatic C−H Amination. Angew. Chem. Int. Ed. 2018, 57, 15891–15895. DOI: 10.1002/anie.201808939.
  • Yang, Y.; Li, R.; Zhao, Y.; Zhao, D.; Shi, Z. Cu-Catalyzed Direct C6-Arylation of Indoles. J. Am. Chem. Soc. 2016, 138, 8734–8737. DOI: 10.1021/jacs.6b05777.
  • (a) Hartung, C. G.; Fecher, A.; Chapell, B.; Snieckus, V. Directed Ortho Metalation Approach to C-7-Substituted Indoles. Suzuki − Miyaura Cross Coupling and the Synthesis of Pyrrolophenanthridone Alkaloids. Org. Lett. 2003, 5, 1899–1902. DOI: 10.1021/ol0344772. (b) Robbins, D. W.; Boebel, T. A.; Hartwig, J. F. Iridium-Catalyzed, Silyl-Directed Borylation of Nitrogen-Containing Heterocycles. J. Am. Chem. Soc. 2010, 132, 4068–4069. DOI: 10.1021/ja1006405. (c) Yang, Y.; Qiu, X.; Zhao, Y.; Mu, Y.; Shi, Z. Palladium-Catalyzed C–H Arylation of Indoles at the C7 Position. J. Am. Chem. Soc. 2016, 138, 495–498. DOI: 10.1021/jacs.5b11569. (d) Antropow, A. H.; Garcia, N. R.; White, K. L.; Movassaghi, M. Enantioselective Synthesis of (−)-Vallesine: Late-Stage C17-Oxidation via Complex Indole Boronation. Org. Lett. 2018, 20, 3647–3650. DOI: 10.1021/acs.orglett.8b01428.
  • (a) Okauchi, T.; Itonaga, M.; Minami, T.; Owa, T.; Kitoh, K.; Yoshino, H. A General Method for Acylation of Indoles at the 3-Position with Acyl Chlorides in the Presence of Dialkylaluminum Chloride. Org. Lett. 2000, 2, 1485–1487. DOI: 10.1021/ol005841p. (b) Bernardo, P. H.; Chai, C. L. L. Friedel − Crafts Acylation and Metalation Strategies in the Synthesis of Calothrixins A and B. J. Org. Chem. 2003, 68, 8906–8909. DOI: 10.1021/jo035049c. (c) Taylor, J. E.; Jones, M. D.; Williams, J. M. J.; Bull, S. D. Friedel − Crafts Acylation of Pyrroles and Indoles Using 1,5-Diazabicyclo[4.3.0]Non-5-Ene (DBN) as a Nucleophilic Catalyst. Org. Lett. 2010, 12, 5740–5743. DOI: 10.1021/ol1025348.
  • Ottoni, O.; Neder, A. V. F.; Dias, A. K. B.; Cruz, R. P. A.; Aquino, L. B. Org. Lett. 2001, 3, 1005–1007. DOI: 10.5555/ol007056i.
  • Wu, W.; Su, W. Mild and Selective Ru-Catalyzed Formylation and Fe-Catalyzed Acylation of Free (N–H) Indoles Using Anilines as the Carbonyl Source. J. Am. Chem. Soc. 2011, 133, 11924–11927. DOI: 10.1021/ja2048495.
  • Jiang, T.-S.; Wang, G.-W. Synthesis of 3-Acylindoles by Palladium-Catalyzed Acylation of Free (N–H) Indoles with Nitriles. Org. Lett. 2013, 15, 788–791. DOI: 10.1021/ol303440y.
  • Kuwano, R.; Kashiwabara, M. Ruthenium-Catalyzed Asymmetric Hydrogenation of N -Boc-Indoles. Org. Lett. 2006, 8, 2653–2655. DOI: 10.1021/ol061039x.
  • Ottoni, O.; Cruz, R.; Alves, R. Efficient and Simple Methods for the Introduction of the Sulfonyl, Acyl and Alkyl Protecting Groups on the Nitrogen of Indole and Its Derivatives. Tetrahedron 1998, 54, 13915–13928. DOI: 10.1016/S0040-4020(98)00865-5.
  • (a) Jiang, X.; Tiwari, A.; Thompson, M.; Chen, Z.; Cleary, T. P.; Lee, T. B. K. A Practical Method for N -Methylation of Indoles Using Dimethyl Carbonate. Org. Process Res. Dev. 2001, 5, 604–608. DOI: 10.1021/op0102215. (b) Shieh, W.-C.; Dell, S.; Repič, O. 1,8-Diazabicyclo[5.4.0]Undec-7-Ene (DBU) and Microwave-Accelerated Green Chemistry in Methylation of Phenols, Indoles, and Benzimidazoles with Dimethyl Carbonate. Org. Lett. 2001, 3, 4279–4281. DOI: 10.1021/ol016949n. (c) Shieh, W.-C.; Dell, S.; Bach, A.; Repič, O.; Blacklock, T. J. Dual Nucleophilic Catalysis with DABCO for the N-Methylation of Indoles. J. Org. Chem. 2003, 68, 1954–1957. DOI: 10.1021/jo0266644. (d) Shieh, W.-C.; Lozanov, M.; Repič, O. Accelerated Benzylation Reaction Utilizing Dibenzyl Carbonate as an Alkylating Reagent. Tetrahedron. Lett. 2003, 44, 6943–6945. DOI: 10.1016/S0040-4039(03)01711-8. (e)Shieh, W.-C.; Lozanov, M.; Loo, M.; Repič, O.; Blacklock, T. J. DABCO- and DBU-Accelerated Green Chemistry for N-, O-, and S-Benzylation with Dibenzyl Carbonate. Tetrahedron. Lett. 2003, 44, 4563–4565. DOI: 10.1016/S0040-4039(03)00992-4.
  • Quaranta, E.; Carafa, M.; Trani, F. The Reaction of Pyrrole with Dimethyl Carbonate under Phosphazene Catalysis: N-Methoxycarbonylation vs N-Methylation. Appl. Catal. B-Environ. 2009, 91, 380–388. DOI: 10.1016/j.apcatb.2009.06.004.
  • Carafa, M.; Distaso, M.; Mele, V.; Trani, F.; Quaranta, E. Superbase-Promoted Direct N-Carbonylation of Pyrrole with Carbonic Acid Diesters. Tetrahedron. Lett. 2008, 49, 3691–3696. DOI: 10.1016/j.tetlet.2008.03.129.
  • Zhou, X.-Y.; Chen, X. Na2CO3-Catalyzed N-Acylation of Indoles with Alkenyl Carboxylates. Synthesis. 2019, 51, 516–521. DOI: 10.1055/s-0037-1609937.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.