Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 12
262
Views
8
CrossRef citations to date
0
Altmetric
SYNTHETIC COMMUNICATIONS REVIEWS

Synthesis and chemical reactivity of novel pyrano[3,2-c]quinoline-3-carbonitriles

&
Pages 1871-1882 | Received 21 Jan 2020, Published online: 29 Apr 2020

References

  • Nqoro, X.; Tobeka, N.; Aderibigbe, B. A. Quinoline-Based Hybrid Compounds with Antimalarial Activity. Molecules 2017, 22, 2268–2289. DOI: 10.3390/molecules22122268.
  • Nainwal, L. M.; Tasneem, S.; Akhtar, W.; Verma, G.; Khan, M. F.; Parvez, S.; Shaquiquzzaman, M.; Akhter, M.; Alam, M. M. Green Recipes to Quinoline: A Review. Eur. J. Med. Chem. 2019, 164, 121–170. DOI: 10.1016/j.ejmech.2018.11.026.
  • Chung, P. Y.; Bian, Z.-X.; Pun, H. Y.; Chan, D.; Chan, A. S. C.; Chui, C. H.; Tang, J. C. O.; Lam, K. H. Recent Advances in Research of Natural and Synthetic Bioactive Quinolines. Future Med. Chem. 2015, 7, 947–967. DOI: 10.4155/fmc.15.34.
  • Vandekerckhove, S.; D’hooghe, M. Quinoline-Based Antimalarial Hybrid Compounds. Bioorg.Med. Chem 2015, 23, 5098–5119. DOI: 10.1016/j.bmc.2014.12.018.
  • Mukherjee, S.; Pal, M. Quinolines: A New Hope against Inflammation. Drug Discov. Today 2013, 18, 389–398. DOI: 10.1016/j.drudis.2012.11.003.
  • Kantevari, S.; Yempala, T.; Surineni, G.; Sridhar, B.; Yogeeswari, P.; Sriram, D. Synthesis and Antitubercular Evaluation of Novel Dibenzo[b,d]Furan and 9-Methyl-9H-Carbazole Derived Hexahydro-2H-Pyrano[3,2-c]Quinolines via Povarov Reaction. Eur. J. Med. Chem. 2011, 46, 4827–4833. DOI: 10.1016/j.ejmech.2011.06.014.
  • Asghari, S.; Ramezani, S.; Mohseni, M. Synthesis and Antibacterial Activity of Ethyl 2-Amino-6-Methyl-5-Oxo-4-Aryl-5,6-Dihydro-4H-Pyrano[3,2-c]Quinoline-3-Carboxylate. Chin. Chem. Lett. 2014, 25, 431–434. DOI: 10.1016/j.cclet.2013.12.010.
  • Kassem, E. M.; El-Sawy, E. R.; Abd-Alla, H. I.; Mandour, A. H.; Abdel-Mogeed, D.; El-Safty, M. M. Synthesis, Antimicrobial, and Antiviral Activities of Some New 5-Sulphonamido 8-Hydroxyquinoline Derivatives. Arch. Pharm. Res. 2012, 35, 955–964. DOI: 10.1007/s12272-012-0602-0.
  • Rajanarendar, E.; Reddy, M. N.; Murthy, K. R.; Reddy, K. G.; Raju, S.; Srinivas, M.; Praveen, B.; Rao, M. S. Synthesis, Antimicrobial, and Mosquito Larvicidal Activity of 1-Aryl-4-Methyl-3,6-Bis-(5-Methylisoxazol-3-yl)-2-Thioxo-2,3,6,10b-Tetrahydro-1H-Pyrimido[5,4-c]Quinolin-5-Ones. Bioorg. Med. Chem. 2010, 20, 6052–6055. DOI: 10.1016/j.bmcl.2010.08.060.
  • Rajanarendar, E.; Reddy, M. N.; Krishna, S. R.; Murthy, K. R.; Reddy, Y. N.; Rajam, M. V. Design, Synthesis, Antimicrobial, anti-Inflammatory and Analgesic Activity of Novel Isoxazolyl Pyrimido[4,5-b]Quinolines and Isoxazolyl Chromeno[2,3-d]Pyrimidin-4-Ones. Eur. J. Med. Chem. 2012, 55, 273–283. DOI: 10.1016/j.ejmech.2012.07.029.
  • Joshi, A. A.; Narkhede, S. S.; Viswanathan, C. L. Design, Synthesis and Evaluation of 5-Substituted Amino-2,4-Diamino-8-Chloropyrimido[4,5-b]Quinolines as Novel Antimalarials. Bioorg. Med. Chem. Lett. 2005, 15, 73–76.c. 2004.10.037 DOI: 10.1016/j.bm.
  • Chilin, A.; Marzaro, G.; Marzano, C.; Via, L. D.; Ferlin, M. G.; Pastorini, G.; Guiotto, A. Synthesis and Antitumor Activity of Novel Amsacrine Analogs: The Critical Role of the Acridine Moiety in Determining Their Biological Activity. Bioorg. Med. Chem. 2009, 17, 523–529. DOI: 10.1016/j.bmc.2008.11.072.
  • Hanawa, F.; Fokialakis, N.; Skaltsounis, A. L. Photo-Activated DNA Binding and Antimicrobial Activities of Furoquinoline and Pyranoquinolone Alkaloids from Rutaceae. Planta Med. 2004, 70, 531–535. DOI: 10.1055/s-2004-827153.
  • Batalha, P.; Vieira de Souza, M. C.; Peña-Cabrera, E.; Cruz, D.; Santos Boechat, F. D. Quinolones in the Search for New Anticancer Agents. CPD 2016, 22, 6009–6020. DOI: 10.2174/1381612822666160715115025.
  • Mahdavi, M.; Hariri, R.; Mirfazli, S. S.; Lotfian, H.; Rastergari, A.; Firuzi, O.; Edraki, N.; Larijani, B.; Akbarzadeh, T.; Saeedi, M. Synthesis and Biological Activity of Some Benzochromenoquinolinones: Tacrine Analogues as Potent anti‐Alzheimer’s Agents. Chem. Biodivers. 2019, 16, e1800488–1. DOI: 10.1002/cbdv.201800488.
  • Jentsch, N. G.; Hart, A. P.; Hume, J. D.; Sun, J.; McNeely, K. A.; Lama, C.; Pigza, J. A.; Donahue, M. G.; Kessl, J. J. Synthesis and Evaluation of Aryl Quinolines as HIV-1 Integrase Multimerization Inhibitors. ACS Med. Chem. Lett. 2018, 9, 1007–1012. DOI: 10.1021/acsmedchemlett.8b00269.
  • Danel, A.; Gondek, E.; Kityk, I. 1H-Pyrazolo[3,4-b]Quinoline and 1H-Pyrazolo[3,4-b]Quinoxaline Derivatives as Promising Materials for Optoelectronic Applications. Opt. Mater. 2009, 32, 267–273. DOI: 10.1016/j.optmat.2009.09.008.
  • Aivali, S.; Tsimpouki, L.; Anastasopoulos, C.; Kallitsis, J. K. Synthesis and Optoelectronic Characterization of Perylene Diimide-Quinoline Based Small Molecules. Molecules 2019, 24, 4406–4401. DOI: 10.3390/molecules24234406.
  • Ibrahim, M. A.; Hassanin, H. M. Heteroannulated Pyranoquinolinediones: Part 1. An Efficient and Convenient Synthesis of the Novel Heteroannulated Pyrano[3,2-c]Quinoline-2,5(6H)-Diones. ARKIVOC 2013, 2013, 217–226. DOI: 10.3998/ark.5550190.p008.156.
  • Lavrado, J.; Paulo, A.; Gut, J.; Rosenthal, P. J.; Moreira, R. Cryptolepine Analogues Containing Basic Aminoalkyl Side-Chains at C-11: Synthesis, Antiplasmodial Activity, and Cytotoxicity. Bioorg. Med. Chem. Lett. 2008, 18, 1378–1381. DOI: 10.1016/j.bmcl.2008.01.015.
  • Yang, D. Q.; Jiang, K. L.; Li, J. N.; Xu, F. Synthesis and Characterization of Quinoline Derivatives via the Friedländer Reaction. Tetrahedron. 2007, 63, 7654–7658. DOI: 10.1016/j.tet.2007.05.037.
  • Ai, Y.; Liang, Y.-J.; Liu, J.-C.; He, H.-W.; Chen, Y.; Tang, C.; Yang, G.-Z.; Fu, L.-W. A Small Chemical Library of 2-Aminoimidazole Derivatives as BACE-1 Inhibitors: Structure-Based Design, Synthesis, and Biological Evaluation. Eur. J. Med. Chem. 2012, 48, 206–213. DOI: 10.1016/j.ejmech.2011.12.01.
  • Jimenez, H. N.; Liu, K. G.; Hong, S.-P.; Reitman, M. S.; Uberti, M. A.; Bacolod, M. D.; Cajina, M.; Nattini, M.; Sabio, M.; Doller, D. 4-(1-Phenyl-1H-Pyrazol-4-yl)Quinolines as Novel, Selective and Brain Penetrant Metabotropic Glutamate Receptor 4 Positive Allosteric Modulators. Bioorg. Med. Chem. Lett. 2012, 22, 3235–3239. DOI: 10.1016/j.bmcl.2012.03.032.
  • Parmar, N. J.; Barad, H. A.; Pansuriya, B. R.; Teraiya, S. B.; Gupta, V. K.; Kant, R. An Efficient One-Pot Synthesis, Structure, Antimicrobial and Antioxidant Investigations of Some Novel Quinolyldibenzo[b,e][1,4]Diazepinones. Bioorg. Med. Chem. Lett. 2012, 22, 3816–3821. DOI: 10.1016/j.bmcl.2012.03.100.
  • Thumar, N. J.; Patel, M. P. Synthesis, Characterization and Biological Activity of Some New Carbostyril Bearing 1H-Pyrazole Moiety. Med. Chem. Res. 2012, 21, 1751–1761. DOI: 10.1007/s00044-011-9693-2.
  • Tomassoli, I.; Herlem, G.; Picaud, F.; Benchekroun, M.; Bautista-Aguilera, O. M.; Luzet, V.; Jimeno, M.-L.; Gharbi, T.; Refouvelet, B.; Ismaili, L. Synthesis, Regioselectivity, and DFT Analysis of New Antioxidant Pyrazolo[4,3-c]Quinoline-3,4-Diones. Monatsh. Chem. 2016, 147, 1069–1079. DOI: 10.1007/s00706-016-1660-7.
  • Ibrahim, M. A.; Hassanin, H. M.; Gabr, Y.; Alnamer, Y. A. Synthesis, Characterization, and Antimicrobial Evaluation of Some Novel 4-Hydroxyquinolin-2(1H)-Ones. Synth. Commun. 2014, 44, 3470–3482. DOI: 10.1080/00397911.2014.949775.
  • Ibrahim, M. A. Ring Transformation of Chromone-3-Carboxamide under Nucleophilic Conditions. J. Braz. Chem. Soc. 2013, 24, 1754–1763. 2013. DOI: 10.5935/0103-5053.20130220.
  • Ibrahim, M. A.; El-Gohary, N. M. Studies on the Chemical Transformations of 6-Methylchromone-3-Carbonitrile under Nucleophilic Conditions. J. Heterocyclic Chem. 2016, 53, 859–864. DOI: 10.1002/jhet.
  • Al-Shaalan, N. H. Synthesis, Characterization and Biological Activities of Cu(II), Co(II), Mn(II), Fe(II), and UO2(VI) Complexes with a New Schiff Base Hydrazone: O-Hydroxyacetophenone-7-Chloro-4-Quinoline Hydrazone. Molecules 2011, 16, 8629–8645. DOI: 10.3390/molecules16108629.
  • Laakso, P. V.; Robinson, R.; Vandrewala, H. P. Studies in the Triazine Series Including a New Synthesis of 1:2:4-Triazines. Tetrahedron 1957, 1, 103–118. DOI: 10.1016/0040-4020(57)85014-5.
  • Ibrahim, M. A.; El-Gohary, N. M.; Said, S. Reactivity of 6-Methylchromone-3-Carbonitrile towards Some Nitrogen Nucleophilic Reagents. HETEROCYCLES 2018, 96, 690–706. DOI: 10.3987/COM-18-13874.
  • Ibrahim, M. A.; El-Mahdy, K. M. Synthesis and Antimicrobial Activity of Some New Heterocyclic Schiff Bases Derived from 2-Amino-3-Formylchromone. Phosphorus Sulfur Silicon 2009, 184, 2945–2958. DOI: 10.1080/10426500802625594.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.