Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 16
420
Views
9
CrossRef citations to date
0
Altmetric
Articles

Design and synthesis of new thiazoles by microwave-assisted method: Evaluation as an anti-breast cancer agents and molecular docking studies

ORCID Icon, , , , & ORCID Icon
Pages 2488-2501 | Received 02 Mar 2020, Published online: 23 Jun 2020

References

  • Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D. M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the Global Cancer Incidence and Mortality in 2018: GLOBOCAN Sources and Methods. Int. J. Cancer. 2019, 144, 1941–1953. DOI: 10.1002/ijc.31937.
  • Blunt, J. W.; Carroll, A. R.; Copp, B. R.; Davis, R. A.; Keyzers, R. A.; Prinsep, M. R. Marine Natural Products. Nat. Prod. Rep. 2018, 35, 8–53. DOI: 10.1039/C7NP00052A.
  • Li, S.-J.; Zhang, X.; Wang, X.-H.; Zhao, C.-Q. Novel Natural Compounds from Endophytic Fungi with Anticancer Activity. Eur. J. Med. Chem. 2018, 156, 316–343. DOI: 10.1016/j.ejmech.2018.07.015.
  • Williamson, R. T.; Sitachitta, N.; Gerwick, W. H. Biosynthesis of the Marine Cyanobacterial Metabolite Barbamide. 2: Elucidation of the Origin of the Thiazole Ring by Application of a New GHNMBC Experiment. Tetrahedron Lett 1999, 40, 5175–5178. DOI: 10.1016/S0040-4039(99)01008-4.
  • Rawal, R. K.; Tripathi, R.; Katti, S. B.; Pannecouque, C.; De Clercq, E. Design and Synthesis of 2-(2,6-Dibromophenyl)-3-Heteroaryl-1,3-Thiazolidin-4-Ones as anti-HIV Agents. Eur. J. Med. Chem. 2008, 43, 2800–2806. DOI: 10.1016/j.ejmech.2007.12.015.
  • Belveren, S.; Ali Dondas, H.; Ülger, M.; Poyraz, S.; García-Mingüens, E.; Ferrándiz-Saperas, M.; Sansano, J. M. Synthesis of Highly Functionalized 2-(Pyrrolidin-1-yl)Thiazole Frameworks with Interesting Antibacterial and Antimycobacterial Activity. Tetrahedron 2017, 73, 6718–6727. DOI: 10.1016/j.tet.2017.10.007.
  • Zhou, M.; Ning, C.; Liu, R.; He, Y.; Yu, N. Design, Synthesis and Biological Evaluation of Indeno[1,2-d]Thiazole Derivatives as Potent Histone Deacetylase Inhibitors. Bioorg. Med. Chem. Lett. 2013, 23, 3200–3203. DOI: 10.1016/j.bmcl.2013.04.004.
  • Li, J.-R.; Li, D.-D.; Wang, R.-R.; Sun, J.; Dong, J.-J.; Du, Q.-R.; Fang, F.; Zhang, W.-M.; Zhu, H.-L. Design and Synthesis of Thiazole Derivatives as Potent FabH Inhibitors with Antibacterial Activity. Eur. J. Med. Chem. 2014, 75, 438–447. DOI: 10.1016/j.ejmech.2013.11.020.
  • Padmavathi, V.; Prema Kumari, C.; Venkatesh, B. C.; Padmaja, A. Synthesis and Antimicrobial Activity of Amido Linked Pyrrolyl and Pyrazolyl-Oxazoles, Thiazoles and Imidazoles. Eur. J. Med. Chem. 2011, 46, 5317–5326. DOI: 10.1016/j.ejmech.2011.08.032.
  • Pawar, C. D.; Sarkate, A. P.; Karnik, K. S.; Bahekar, S. S.; Pansare, D. N.; Shelke, R. N.; Jawale, C. S.; Shinde, D. B. Synthesis and Antimicrobial Evaluation of Novel Ethyl 2-(2-(4-Substituted)Acetamido)-4-Subtituted-Thiazole-5-Carboxylate Derivatives. Bioorg. Med. Chem. Lett. 2016, 26, 3525–3528. DOI: 10.1016/j.bmcl.2016.06.030.
  • Reddy, G. M.; Garcia, J. R.; Reddy, V. H.; de Andrade, A. M.; Camilo, A.; Pontes Ribeiro, R. A.; de Lazaro, S. R. Synthesis, Antimicrobial Activity and Advances in Structure-Activity Relationships (SARs) of Novel Tri-Substituted Thiazole Derivatives. Eur. J. Med. Chem. 2016, 123, 508–513. DOI: 10.1016/j.ejmech.2016.07.062.
  • Kalkhambkar, R. G.; Kulkarni, G. M.; Shivkumar, H.; Rao, R. N. Synthesis of Novel Triheterocyclic Thiazoles as anti-Inflammatory and Analgesic Agents. Eur. J. Med. Chem. 2007, 42, 1272–1276. DOI: 10.1016/j.ejmech.2007.01.023.
  • Popsavin, M.; Spaić, S.; Svirčev, M.; Kojić, V.; Bogdanović, G.; Popsavin, V. Synthesis and Antitumour Activity of New Tiazofurin Analogues Bearing a 2,3-Anhydro Functionality in the Furanose Ring. Bioorg. Med. Chem. Lett. 2007, 17, 4123–4127. DOI: 10.1016/j.bmcl.2007.05.050.
  • Patt, W. C.; Hamilton, H. W.; Taylor, M. D.; Ryan, M. J.; Taylor, D. G.; Connolly, C. J.; Doherty, A. M.; Klutchko, S. R.; Sircar, I.; Steinbaugh, B. A.; et al. Structure-Activity Relationships of a Series of 2-Amino-4-Thiazole-Containing Renin Inhibitors. J. Med. Chem. 1992, 35, 2562–2572. DOI: 10.1021/jm00092a006.
  • Abstracts, C.; Haragun, A. United States Patent (19) AfC. 1999.
  • Gore, I. G. E.; Branch, N.; Roman, T.; Orange, E.; Wayne, K.; Gore, R. A. United States Patent (19). 1998. DOI: US005485919A.
  • Daus, P. E. G.; Kapner, A. E. M. Nir. 1986.
  • Amidon, G. L.; Arbor, A.; Data, R.; et al. United States Patent (19) Fig-1. 1999;425. DOI: 10.1016/j.(73).
  • Karade, H. N.; Acharya, B. N.; Sathe, M.; Kaushik, M. P. Design, Synthesis, and Antimalarial Evaluation of Thiazole-Derived Amino Acids. Med. Chem. Res. 2008, 17, 19–29. DOI: 10.1007/s00044-008-9089-0.
  • Rouf, A.; Tanyeli, C. Bioactive Thiazole and Benzothiazole Derivatives. Eur. J. Med. Chem. 2015, 97, 911–927. DOI: 10.1016/j.ejmech.2014.10.058.
  • Narender, M.; Reddy, M. S.; Sridhar, R.; Nageswar, Y. V. D.; Rao, K. R. Aqueous Phase Synthesis of Thiazoles and Aminothiazoles in the Presence of β-Cyclodextrin. Tetrahedron Lett 2005, 46, 5953–5955. DOI: 10.1016/j.tetlet.2005.06.130.
  • Hargrave, K. D.; Hess, F. K.; Oliver, J. T. N-(4-substituted-thiazolyl)oxamic Acid Derivatives, a New Series of Potent, Orally Active Antiallergy Agents. J. Med. Chem. 1983, 26, 1158–1163. DOI: 10.1021/jm00362a014.
  • Verhoest, P. R.; Chapin, D. S.; Corman, M.; Fonseca, K.; Harms, J. F.; Hou, X.; Marr, E. S.; Menniti, F. S.; Nelson, F.; O'Connor, R.; et al. Discovery of a Novel Class of Phosphodiesterase 10A Inhibitors and Identification of Clinical Candidate 2-[4-(1-Methyl-4-Pyridin-4-yl-1H-Pyrazol-3-yl)-Phenoxymethyl]-Quinoline (PF-2545920) for the Treatment of Schizophrenia. J. Med. Chem. 2009, 52, 5188–5196. DOI: 10.1021/jm900521k.
  • Jaen, J. C.; Wise, L. D.; Caprathe, B. W.; Tecle, H.; Bergmeier, S.; Humblet, C. C.; Heffner, T. G.; Meltzer, L. T.; Pugsley, T. A. 4-(1,2,5,6-Tetrahydro-1-Alkyl-3-Pyridinyl)-2-Thiazolamines: A Novel Class of Compounds with Central Dopamine Agonist Properties. J. Med. Chem. 1990, 33, 311–317. DOI: 10.1021/jm00163a051.
  • Yeung, C. M.; Klein, L. L.; Flentge, C. A.; Randolph, J. T.; Zhao, C.; Sun, M.; Dekhtyar, T.; Stoll, V. S.; Kempf, D. J. Oximinoarylsulfonamides as Potent HIV Protease Inhibitors. Bioorg. Med. Chem. Lett. 2005, 15, 2275–2278. DOI: 10.1016/j.bmcl.2005.03.008.
  • Das, B.; Saidi Reddy, V.; Ramu, R. A Rapid and High-Yielding Synthesis of Thiazoles and Aminothiazoles Using Ammonium-12-Molybdophosphate. J. Mol. Catal. A Chem. 2006, 252, 235–237. DOI: 10.1016/j.molcata.2006.02.065.
  • Ghosh, A. K.; Anderson, D. D. Tetrahydrofuran, Tetrahydropyran, Triazoles and Related Heterocyclic Derivatives as HIV Protease Inhibitors. Future Med. Chem. 2011, 3, 1181–1197. DOI: 10.4155/fmc.11.68.
  • Lai, Y.-T.; Wang, T.; O'Dell, S.; Louder, M. K.; Schön, A.; Cheung, C. S. F.; Chuang, G.-Y.; Druz, A.; Lin, B.; McKee, K.; et al. Lattice Engineering Enables Definition of Molecular Features Allowing for Potent Small-Molecule Inhibition of HIV-1 Entry. Nat. Commun. 2019, 10, 47DOI: 10.1038/s41467-018-07851-1.
  • Brvar, M.; Perdih, A.; Oblak, M.; Mašič, L. P.; Solmajer, T. In Silico Discovery of 2-Amino-4-(2,4-Dihydroxyphenyl)Thiazoles as Novel Inhibitors of DNA Gyrase B. Bioorg. Med. Chem. Lett. 2010, 20, 958–962. DOI: 10.1016/j.bmcl.2009.12.060.
  • Khan, T.; Sankhe, K.; Suvarna, V.; Sherje, A.; Patel, K.; Dravyakar, B. DNA Gyrase Inhibitors: Progress and Synthesis of Potent Compounds as Antibacterial Agents. Biomed. Pharmacother. 2018, 103, 923–938. DOI: 10.1016/j.biopha.2018.04.021.
  • Dömling, A.; Wang, W.; Wang, K. Chemistry and Biology of Multicomponent Reactions. Chem. Rev. 2012, 112, 3083–3135. DOI: 10.1021/cr100233r.
  • Bienaymé, H.; Hulme, C.; Oddon, G.; Schmitt, P. Maximizing Synthetic Efficiency: Multi-Component Transformations Lead the Way. Chem. Eur. J. 2000, 6, 3321–3329. DOI: 10.1002/1521-3765(20000915)6:18<3321::AID-CHEM3321>3.0.CO;2-A.
  • Vaarla, K.; Karnewar, S.; Panuganti, D.; Peddi, S. R.; Vedula, R. R.; Manga, V.; Kotamraju, S. -(2‐(5‐Amino‐3‐Aryl‐1 H ‐Pyrazol‐1‐yl) Thiazol‐4‐yl)‐2H‐Chromen‐2‐Ones as Potential Anticancer Agents: Synthesis, Anticancer Activity Evaluation and Molecular Docking Studies. ChemistrySelect 2019, 4, 4324–4330. DOI: 10.1002/slct.201900077.
  • Jilloju, P. C.; Srikanth, M.; Kumar, S. V.; Vedula, R. R. One-Pot, Multi-Component Synthesis of Substituted 2-(6-Phenyl-7 H -[1,2,4]Triazolo[3,4-b][1,3,4]Thiadiazin-3-yl)-2,3-Dihydrophthalazine-1,4-Diones. Polycycl. Aromat. Compd. 2020, 1–12. DOI: 10.1080/10406638.2019.1709212.
  • Yu, J.-S.; Noda, H.; Shibasaki, M. Quaternary β2,2 -Amino Acids: Catalytic Asymmetric Synthesis and Incorporation into Peptides by Fmoc-Based Solid-Phase Peptide Synthesis. Angew. Chem. Int. Ed. Engl. 2018, 57, 818–822. DOI: 10.1002/anie.201711143.
  • Houghten, R. A. General Method for the Rapid Solid-Phase Synthesis of Large Numbers of Peptides: Specificity of Antigen-Antibody Interaction at the Level of Individual Amino Acids. Proc. Natl. Acad. Sci. USA. 1985, 82, 5131–5135. DOI: 10.1073/pnas.82.15.5131.
  • Maya, V.; Raj, M.; Singh, V. K. Highly Enantioselective Organocatalytic Direct Aldol Reaction in an Aqueous Medium. Org. Lett. 2007, 9, 2593–2595. DOI: 10.1021/ol071013l.
  • Yu, C.; Liu, B.; Hu, L. Efficient Baylis-Hillman Reaction Using Stoichiometric Base Catalyst and an Aqueous Medium. J. Org. Chem. 2001, 66, 5413–5418. DOI: 10.1021/jo015628m.
  • Venzke, D.; Flores, A. F. C.; Quina, F. H.; Pizzuti, L.; Pereira, C. Ultrasound Promoted Greener Synthesis of 2-(3,5-Diaryl-4,5-Dihydro-1H-Pyrazol-1-yl)-4-Phenylthiazoles. Ultrason. Sonochem. 2011, 18, 370–374. DOI: 10.1016/j.ultsonch.2010.07.002.
  • Li, J.-T.; Li, Y.-W.; Song, Y.-L.; Chen, G.-F. Improved Synthesis of 2,2′-Arylmethylene Bis(3-Hydroxy-5,5-Dimethyl-2-Cyclohexene-1-One) Derivatives Catalyzed by Urea Under Ultrasound. Ultrason. Sonochem. 2012, 19, 1–4. DOI: 10.1016/j.ultsonch.2011.05.001.
  • Cravotto, G.; Cintas, P. Power Ultrasound in Organic Synthesis: Moving Cavitational Chemistry from Academia to Innovative and Large-Scale Applications. Chem. Soc. Rev. 2006, 35, 180–196. DOI: 10.1039/B503848K.
  • Walsh, P. J.; Li, H.; de Parrodi, C. A. A Green Chemistry Approach to Asymmetric Catalysis: Solvent-Free and Highly Concentrated Reactions. Chem. Rev. 2007, 107, 2503–2545. DOI: 10.1021/cr0509556.
  • Tanaka, K. Solvent‐Free Organic Synthesis, Vol. 100; Wiley: Weinheim, Germany, 2008. DOI: 10.1002/9783527626410.
  • Vaarla, K.; Pavurala, S.; Arandkar, V.; Vedula, R. R.; Toopurani, M. K. Solvent‐Free One‐Pot Tandem Multicomponent Synthesis of Triazolothiadiazinyl Coumarins and Their Antimicrobial Properties. ChemistrySelect 2019, 4, 5828–5834. DOI: 10.1002/slct.201900655.
  • Mady, A. H.; Baynosa, M. L.; Tuma, D.; Shim, J.-J. Facile Microwave-Assisted Green Synthesis of Ag-ZnFe2O4@rGO Nanocomposites for Efficient Removal of Organic Dyes under UV- and Visible-Light Irradiation. Appl. Catal. B Environ. 2017, 203, 416–427. DOI: 10.1016/j.apcatb.2016.10.033.
  • Gawande, M. B.; Bonifácio, V. D. B.; Luque, R.; Branco, P. S.; Varma, R. S. Solvent-Free and Catalysts-Free Chemistry: A Benign Pathway to Sustainability. ChemSusChem 2014, 7, 24–44. DOI: 10.1002/cssc.201300485.
  • Mamidala, S.; Aravilli, R. K.; Vaarla, K.; Vedula, R. R. Microwave‐Assisted Synthesis and Biological Evaluation of Some New Pyrazolothiazoles via a Multicomponent Approach. ChemistrySelect 2019, 4, 9878–9881. DOI: 10.1002/slct.201901633.
  • Janostiak, R.; Rauniyar, N.; Lam, T. K. T.; Ou, J.; Zhu, L. J., Green, M. R., Wajapeyee, N. MELK Promotes Melanoma Growth by Stimulating the NF-κB Pathway. Cell Rep. 2017, 21, 2829–2841. DOI: 10.1016/j.celrep.2017.11.033.
  • Jiang, P.; Zhang, D. Maternal Embryonic Leucine Zipper Kinase (MELK): A Novel Regulator in Cell Cycle Control, Embryonic Development, and Cancer. Int. J. Mol. Sci. 2013, 14, 21551–21560. DOI: 10.3390/ijms141121551.
  • Wang, Y.; Lee, Y.-M.; Baitsch, L.; Huang, A.; Xiang, Y.; Tong, H.; Lako, A.; Von, T.; Choi, C.; Lim, E.; et al. MELK is an Oncogenic Kinase Essential for Mitotic Progression in Basal-like Breast Cancer Cells. Elife 2014, 3, e01763. DOI: 10.7554/eLife.01763.
  • Gray, D.; Jubb, A. M.; Hogue, D.; Dowd, P.; Kljavin, N.; Yi, S.; Bai, W.; Frantz, G.; Zhang, Z.; Koeppen, H.; et al. Maternal Embryonic Leucine Zipper Kinase/Murine Protein Serine-Threonine Kinase 38 Is a Promising Therapeutic Target for Multiple Cancers. Cancer Res. 2005, 65, 9751–9761. DOI: 10.1158/0008-5472.CAN-04-4531.
  • Li, G.; Yang, M.; Zuo, L.; Wang, M. MELK as a Potential Target to Control Cell Proliferation in Triple-Negative Breast Cancer MDA-MB-231 Cells. Oncol. Lett. 2018, 15, 9934–9940. DOI: 10.3892/ol.2018.8543.
  • Klaeger, S.; Heinzlmeir, S.; Wilhelm, M.; Polzer, H.; Vick, B.; Koenig, P.-A.; Reinecke, M.; Ruprecht, B.; Petzoldt, S.; Meng, C.; et al. The Target Landscape of Clinical Kinase Drugs. Science (80-) 2017, 358, eaan4368. DOI: 10.1126/science.aan4368.
  • Schrödinger Llc New York Ny. Glide, version 5.6. Glid Schrödinger LLC NY. 2010.
  • Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, J. J.; Mainz, D. T.; Repasky, M. P.; Knoll, E. H.; Shelley, M.; Perry, J. K.; et al. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. J. Med. Chem. 2004, 47, 1739–1749. DOI: 10.1021/jm0306430.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.