Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 16
155
Views
9
CrossRef citations to date
0
Altmetric
Articles

Base-mediated alternate route for multi-functionalized allylbenzenes using ring transformation strategy

& ORCID Icon
Pages 2511-2521 | Received 21 Feb 2020, Published online: 25 Jun 2020

References

  • Hassam, M.; Taher, A.; Arnott, G. E.; Green, I. R.; van Otterlo, W. A. L. Isomerization of Allylbenzenes. Chem. Rev. 2015, 115, 5462–5569. DOI: 10.1021/acs.chemrev.5b00052.
  • Krause, S. B.; McAtee, J. R.; Yap, G. P. A.; Watson, D. A. A Bench-Stable, Single-Component Precatalyst for Silyl-Heck Reactions. Org. Lett. 2017, 19, 5641–5644. DOI: 10.1021/acs.orglett.7b02807.
  • Fernandes, R. A.; Nallasivam, J. L. Catalytic Allylic Functionalization via π-Allyl Palladium Chemistry. Org. Biomol. Chem. 2019, 17, 8647–8672. DOI: 10.1039/C9OB01725A.
  • Silveira, S. R. C.; Andrade, L. N.; B. de Oliveira, R. R.; de Sousa, D. P. A Review on anti-Inflammatory Activity of Phenylpropanoids Found in Essential Oils. Molecules. 2014, 19, 1459–1480. DOI: 10.3390/molecules19021459.
  • Martins, C.; Rueff, J.; Rodrigues, A. S. Genotoxic Alkenylbenzene Flavourings, a Contribution to Risk Assessment. Food Chem. Toxicol. 2018, 118, 861–879. DOI: 10.1016/j.fct.2018.06.020.
  • Kemprai, P.; Mahanta, B. P.; Sut, D.; Barman, R.; Banik, D.; Lal, M.; Saikia, S. P.; Haldar, S. Review on Safrole: Identity Shift of the ‘Candy Shop’ Aroma to a Carcinogen and Deforester. Flavour Fragr. J. 2019, 35, 5–23. DOI: 10.1002/ffj.3521.
  • Rahman, N. A. A.; Fazilah, A.; Effarizah, M. E. Toxicity of Nutmeg (Myristicin): A Review. Int. J. Adv. Sci. Eng. Inf. Technol. 2015, 5, 212. DOI: 10.18517/ijaseit.5.3.518.
  • de Almeida, R. R. P.; Souto, R. N. P.; Bastos, C. N.; da Silva, M. H. L.; Maia, J. G. S. Chemical Variation in Piper Aduncum and Biological Properties of Its Dillapiole-Rich Essential Oil. Chem. Biodivers. 2009, 6, 1427–1434. DOI: 10.1002/cbdv.200800212.
  • Parise-Filho, R.; Pastrello, M.; Emygdio, C.; Camerlingo, P.; Silva, G. J.; Agostinho, L. A.; de Souza, T.; Magri, F. M. M.; Ribeiro, R. R.; Brandt, C. A.; Polli, M. C. The Anti-Inflammatory Activity of Dillapiole and Some Semisynthetic Analogues. Pharm. Biol. 2011, 49, 1173–1179. DOI: 10.3109/13880209.2011.575793.
  • Rossi, P.-G.; Bao, L.; Luciani, A.; Panighi, J.; Desjobert, J.-M.; Costa, J.; Casanova, J.; Bolla, J.-M.; Berti, L. (E)-Methylisoeugenol and Elemicin: Antibacterial Components of Daucus carota L. Essential Oil Against Campylobacter jejuni. J. Agric. Food Chem. 2007, 55, 7332–7336. DOI: 10.1021/jf070674u.
  • Sajjadi, S.; Shokoohinia, Y.; Hemmati, S.; Gholamzadeh, S.; Behbahani, M. Antivirial Activity of Elemicin from Peucedanum Pastinacifolium. Res. Pharm. Sci. 2012, 7, 784.
  • Kaufman, T. S. The Multiple Faces of Eugenol. A Versatile Starting Material and Building Block for Organic and Bio-Organic Synthesis and a Convenient Precursor Toward Bio-Based. J. Braz. Chem. Soc. 2015, 26, 1055. DOI: 10.5935/0103-5053.20150086.
  • Dwivedi, V.; Tripathi, S. Review Study on Potential Activity of Piper Betle. J. Pharmacogn. Phytochem. 2014, 3, 93.
  • Sharma, S.; Ali Khan, I.; Ali, I.; Ali, F.; Kumar, M.; Kumar, A.; Johri, R. K.; Abdullah, S. T.; Bani, S.; Pandey, A.; et al. Evaluation of the Antimicrobial, Antioxidant, and anti-Inflammatory Activities of Hydroxychavicol for Its Potential Use as an Oral Care Agent. Antimicrob. Agents Chemother. 2009, 53, 216–222. DOI: 10.1128/AAC.00045-08.
  • Singh, D.; Narayanamoorthy, S.; Gamre, S.; Majumdar, A. G.; Goswami, M.; Gami, U.; Cherian, S.; Subramanian, M. Hydroxychavicol, a Key Ingredient of Piper Betle Induces Bacterial Cell Death by DNA Damage and Inhibition of Cell Division. Free Radic. Biol. Med. 2018, 120, 62–71. DOI: 10.1016/j.freeradbiomed.2018.03.021.
  • Rahman, A. A.; Mokhtar, N. M.; Harun, R.; Jamal, R.; Ngah, W. Z. W. Transcriptome Analysis Reveals the Molecular Mechanisms of Combined Gamma-Tocotrienol and Hydroxychavicol in Preventing the Proliferation of 1321N1, SW1783, and LN18 Glioma Cancer Cells. J. Physiol. Biochem. 2019, 75, 499–517. DOI: 10.1007/s13105-019-00699-z.
  • Ismaiel, O. A.; Abdelghani, E.; Mousa, H.; Eldahmy, S. I.; Bayoumy, B. E. Determination of Estragole in Pharmaceutical Products, Herbal Teas and Herbal Extracts Using GC-FID. J. App. Pharm. Sci. 2016, 6, 144–150. DOI: 10.7324/JAPS.2016.601220.
  • Kawakami, T.; Ito, S.; Nozaki, K. Iron-Catalysed Homo- and Copolymerisation of Propylene: steric Influence of Bis(Imino)Pyridine Ligands. Dalton Trans. 2015, 44, 20745–20752. DOI: 10.1039/c5dt03551a.
  • Hu, X.; Ma, X.; Jian, Z. Coordination–Insertion Polymerization of Polar Allylbenzene Monomers. Polym. Chem. 2019, 10, 1912–1919. DOI: 10.1039/c9py00026g.
  • Alhaffar, M. T.; Akhtar, M. N.; Ali, S. A. Utilization of Catecholic Functionality in Natural Safrole and Eugenol to Synthesize Mussel-Inspired Polymers. RSC Adv. 2019, 9, 21265–21277. DOI: 10.1039/c9ra04719k.
  • Hartung, C. G.; Breindl, C.; Tillack, A.; Beller, M. A Base-Catalyzed Domino-Isomerization-Hydroamination Reaction-A New Synthetic Route to Amphetamines. Tetrahedron. 2000, 56, 5157–5162. DOI: 10.1016/S0040-4020(00)00436-1.
  • Mujahid, M.; Korpe, G. V.; Deshmukh, S. P.; Bhadange, S. G.; Muthukrishnan, M. An Alternative Synthesis of the CNS Stimulant Prolintane. Arkivoc. 2019, 2019, 292–297. DOI: 10.24820/ark.5550190.p010.952.
  • Gomes, P.; Gosmini, C.; Perichon, J. Cobalt-Catalyzed Direct Electrochemical Cross-Coupling between Aryl or Heteroaryl Halides and Allylic Acetates or Carbonates. J. Org. Chem. 2003, 68, 1142–1145. DOI: 10.1021/jo026421b.
  • Kayaki, Y.; Koda, T.; Ikariya, T. A Highly Effective (Triphenyl Phosphite)Palladium Catalyst for a Cross-Coupling Reaction of Allylic Alcohols with Organoboronic Acids. Eur. J. Org. Chem. 2004, 2004, 4989–4993. DOI: 10.1002/ejoc.200400621.
  • Seomoon, D.; Lee, P. H. Xantphos as an Efficient Ligand for Palladium-Catalyzed Cross-Coupling Reactions of Aryl Bromides and Triflates with Allyl Acetates and Indium. J. Org. Chem. 2008, 73, 1165–1168. DOI: 10.1021/jo702279t.
  • Denmark, S. E.; Werner, N. S. Cross-Coupling of Aromatic Bromides with Allylic Silanolate Salts. J. Am. Chem. Soc. 2008, 130, 16382–16393. DOI: 10.1021/ja805951j.
  • Mayer, M.; Czaplik, W. M.; Wangelin, A. J. Practical Iron-Catalyzed Allylations of Aryl Grignard Reagents. Adv. Synth. Catal. 2010, 352, 2147–2152. DOI: 10.1002/adsc.201000228.
  • Zhang, S.; Ullah, A.; Yamamoto, Y.; Bao, M. Palladium-Catalyzed Regioselective Allylation of Chloromethyl (Hetero)Arenes with Allyl Pinacolborate. Adv. Synth. Catal. 2017, 359, 2723–2728. DOI: 10.1002/adsc.201700350.
  • Yan, R.; Wang, Z.-X. Ruthenium-Catalyzed C–H Allylation of Arenes with Allylic Amines. Org. Biomol. Chem. 2018, 16, 3961–3969. DOI: 10.1039/c8ob00723c.
  • Bochicchio, A.; Cefola, R.; Choppin, S.; Colobert, F.; Noia, M. A. D.; Funicello, M.; Hanquet, G.; Pisano, I.; Todisco, S.; Chiummiento, L. Selective Claisen Rearrangement and Iodination for the Synthesis of Polyoxygenated Allyl Phenol Derivatives. Tetrahedr. Lett. 2016, 57, 4053–4055. DOI: 10.1016/j.tetlet.2016.07.079.
  • John, A.; Dereli, B.; Ortuno, M. A.; Johnson, H. E.; Hillmyer, M. A.; Cramer, C. J.; Tolman, W. B. Selective Decarbonylation of Fatty Acid Esters to Linear α-Olefins. Organometallics. 2017, 36, 2956–2964. DOI: 10.1021/acs.organomet.7b00411.
  • Wu, X.; Cruz, F. A.; Lu, A.; Dong, V. M. Tandem Catalysis: Transforming Alcohols to Alkenes by Oxidative Dehydroxymethylation. J. Am. Chem. Soc. 2018, 140, 10126–10130. DOI: 10.1021/jacs.8b06069.
  • Shetgaonkar, S. E.; Singh, F. V. A Metal-Free Approach for the Synthesis of 2-Tetralones via Carbanion-Induced Ring Transformation of 2H-Pyran-2-Ones. Synthesis. 2018, 50, 3540–3548. DOI: 10.1055/s-0036-1591591.
  • Singh, F. V.; Kole, P. B. Metal-Free Synthesis of Biaryl- and Teraryl-Cored Diarylmethanes by Ring Transformation of 2H-Pyran-2-Ones. Synthesis. 2019, 51, 1435–1444. DOI: 10.1055/s-0037-1610332.
  • Shetgaonkar, S. E.; Singh, F. V. Ultrasound-Assisted One Pot Synthesis of Polysubstituted Meta-Terphenyls Using Ring Transformation Strategy. Synth. Commun. 2019, 49, 1092–1102. DOI: 10.1080/00397911.2019.1591454.
  • Kole, P. B.; Singh, F. V. Versatile Synthesis of Functionalized Tetrahydroisoquinolines by Ring Transformation of 2H-Pyran-2-Ones. Aust. J. Chem. 2019, 72, 524. DOI: 10.1071/CH19046.
  • Singh, F. V.; Kumar, V.; Goel, A. Regioselective Synthesis of Functionally Crowded Benzenes at Room Temperature through Ring Transformation of 2H-Pyran-2-Ones. Synlett. 2007, 2007, 2086–2090. DOI: 10.1055/s-2007-984885.
  • Goel, A.; Singh, F. V.; Dixit, M.; Verma, D.; Raghunandan, R.; Maulik, P. R. Highly Efficient Non-Palladium-Catalyzed Controlled Synthesis and X-Ray Analysis of Functionalized 1,2-Diaryl-, 1,2,3-Triaryl-, and 1,2,3,4-Tetraarylbenzenes. Chem Asian J. 2007, 2, 239–247. DOI: 10.1002/asia.200600278.
  • Goel, A.; Singh, F. V.; Kumar, V.; Reichert, M.; Gulder, T. A. M.; Bringmann, G. Synthesis, Optical Resolution, and Configurational Assignment of Novel Axially Chiral Quateraryls. J. Org. Chem. 2007, 72, 7765–7768. DOI: 10.1021/jo071097b.
  • Singh, F. V.; Kumar, V.; Kumar, B.; Goel, A. Regioselective Synthesis of 2-Amino- Isophthalonitriles Through a Ring Transformation Strategy. Tetrahedron. 2007, 63, 10971–10978. DOI: 10.1016/j.tet.2007.08.056.
  • Goel, A.; Ram, V. J. Natural and Synthetic 2H-Pyran-2-Ones and Their Versatility in Organic Synthesis. Tetrahedron. 2009, 65, 7865–7913. DOI: 10.1002/chin.200950230.
  • Pratap, R.; Ram, V. J. 2H-Pyran-2-Ones and Their Annelated Analogs as Multifaceted Building Blocks for the Fabrication of Diverse Heterocycles. Tetrahedron. 2017, 73, 2529–2590. DOI: 10.1016/j.tet.2017.02.028.
  • Goel, A.; Singh, F. V.; Sharon, A.; Maulik, P. R. Regioselective Syntheses of Functionalized2-Aminopyridines and 2-Pyridinones through Nucleophile-Induced Ring Transformation Reactions. Synlett. 2005, 2005, 623–626. DOI: 10.1055/s-2005-862365.
  • Goel, A.; Singh, F. V.; Verma, D. Substituent-Dictated Concise Synthesis of 4,6- Disubstituted N-Alkyl-2-Pyridones and 2-Aminopyridines. Synlett. 2005, 2027–2030. DOI: 10.1055/s-2005-872232.
  • Goel, A.; Taneja, G.; Raghuvanshi, A.; Kant, R.; Maulik, P. R. Diversity-Oriented General Protocol for the Synthesis of Privileged Oxygen Scaffolds: Pyrones, Coumarins, Benzocoumarins and Naphthocoumarins. Org. Biomol. Chem. 2013, 11, 5239–5253. DOI: 10.1039/c3ob40859k.
  • Sharma, A.; Umar, S.; Kar, P.; Singh, K.; Sachdev, M.; Goel, A. A New Type of Biocompatible Fluorescent Probe AFN for Fixed and Live Cell Imaging of Intracellular Lipid Droplets. Analyst. 2016, 141, 137–143. DOI: 10.1039/C5AN01623A.
  • Tominaga, Y.; Ushirogochi, A.; Matsuda, Y. Synthesis and Reaction of 6-Substituted 3- Methoxycarbonyl-4-Methylthio-2H-Pyran-2-One Derivatives. J. Heterocycl. Chem. 1987, 24, 1557–1567. DOI: 10.1002/jhet.5570240612.
  • Tominaga, Y. Synthesis of Heterocyclic Compounds Using Ketene Dithioacetals. Trends Heterocycl. Chem. 1991, 2, 43.
  • Singh, F. V.; Chaurasia, S.; Joshi, M. D.; Srivastava, A. K.; Goel, A. Synthesis and in Vivo Antihyperglycemic Activity of Nature-Mimicking Furanyl-2-Pyranones in STZ-S Model. Bioorg. Med. Chem. Lett. 2007, 17, 2425–2429. DOI: 10.1016/j.bmcl.2007.02.036.
  • Sharma, C. P.; Gupta, N. M.; Singh, J.; Yadav, R. A. K.; Dubey, D. K.; Rawat, K. S.; Jha, A. K.; Jou, J.-H.; Goel, A. Synthesis of Solution-Processable Donor-Acceptor Pyranone Dyads for White Organic Light-Emitting Devices. J. Org. Chem. 2019, 84, 7674–7684. DOI: 10.1021/acs.joc.9b00293.
  • Goel, A.; Verma, D.; Singh, F. V. A Vicarious Synthesis of Unsymmetrical Meta- and Para-Terphenyls from 2H-Pyran-2-Ones. Tetrahedron Lett. 2005, 46, 8487–8491. DOI: 10.1016/j.tetlet.2005.10.018.
  • Singh, F. V.; Dixit, M.; Chaurasia, S.; Raghunandan, R.; Maulik, P. R.; Goel, A. A Substituent-Controlled General Approach to Access Arylated Pyran-2-Ones and Pyrano[3,4-c]Pyran-1,8-Diones. Tetrahedron Lett. 2007, 48, 8998–9002. DOI: 10.1016/j.tetlet.2007.10.095.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.