Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 20
328
Views
1
CrossRef citations to date
0
Altmetric
Articles

Palladium-catalyzed decarbonylative C–N coupling to convert arylcarbamoyl chlorides to urea derivatives

, , , &
Pages 3113-3124 | Received 24 Apr 2020, Published online: 20 Jul 2020

References

  • (a) Guan, A.; Liu, C.; Yang, X.; Dekeyser, M. Application of the Intermediate Derivatization Approach in Agrochemical Discovery. Chem. Rev. 2014, 114, 7079–7107. DOI: 10.1021/cr4005605. (b) Gallou, I. Unsymmetrical Ureas. Synthetic Methodologies and Application in Drug Design. Org. Prep. Proced. Int. 2007, 39, 355–383. DOI: 10.1080/00304940709458592. (c) Bigi, F.; Maggi, R.; Sartori, G. Selected Syntheses of Ureas through Phosgene Substitutes. Green Chem. 2000, 2, 140–148. DOI: 10.1039/b002127j. (d) Vishnyakova, T. P.; Golubeva, I. A.; Glebova, E. V. Substituted Ureas. Methods of Synthesis and Applications. Russ. Chem. Rev. 1985, 54, 249–261. DOI: 10.1070/RC1985v054n03ABEH003022.
  • Cabrera, A.; Cox, L.; Velarde, P.; Koskinen, W. C.; Cornejo, J. Fate of Diuron and Terbuthylazine in Soils Amended with Two-Phase Olive Oil Mill Waste. J. Agric. Food Chem. 2007, 55, 4828–4834. DOI: 10.1021/jf070525b.
  • Askew, S. D.; McNulty, B. M. S. Methiozolin and Cumyluron for Preemergence Annual Bluegrass (Poa Annua) Control on Creeping Bentgrass (Agrostis Stolonifera) Putting Greens. Weed Technol. 2014, 28, 535–542. DOI: 10.1614/WT-D-14-00018.1.
  • Toniêto, T. A. P.; de Pierri, L.; Tornisielo, V. L.; Regitano, J. B. Fate of Tebuthiuron and Hexazinone in Green-Cane Harvesting System. J. Agric. Food Chem. 2016, 64, 3960–3966. DOI: 10.1021/acs.jafc.5b04665.
  • Llovet, J. M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J. F.; de Oliveira, A. C.; Santoro, A.; Raoul, J. L.; Forner, A.; et al. Sorafenib in Advanced Hepatocellular Carcinoma. N Engl. J. Med. 2008, 359, 378–390. DOI: 10.1056/NEJMoa0708857.
  • Awadzi, K.; Gilles, H. M. Diethylcarbamazine in the Treatment of Patients with Onchocerciasis. Br. J. Clin. Pharmacol. 1992, 34, 281–288. DOI: 10.1111/j.1365-2125.1992.tb05632.x.
  • (a) Kehr, J.; Yoshitake, T.; Ichinose, F.; Yoshitake, S.; Kiss, B.; Gyertyan, I.; Adham, N. Effects of Cariprazine on Extracellular Levels of Glutamate, GABA, Dopamine, Noradrenaline and Serotonin in the Medial Prefrontal Cortex in the Rat Phencyclidine Model of Schizophrenia Studied by Microdialysis and Simultaneous Recordings of Locomotor Activity. Psychopharmacology (Berl). 2018, 235, 1593–1607. DOI: 10.1007/s00213-018-4874-z. (b) Shen, Y.; McCorvy, J. D.; Martini, M. L.; Rodriguiz, R. M.; Pogorelov, V. M.; Ward, K. M.; Wetsel, W. C.; Liu, J.; Roth, B. L.; Jin, J. D2 Dopamine Receptor G Protein-Biased Partial Agonists Based on Cariprazine. J. Med. Chem. 2019, 62, 4755–4771. DOI: 10.1021/acs.jmedchem.9b00508.
  • Babad, H.; Zeiler, A. G. Chemistry of Phosgene. Chem. Rev. 1973, 73, 75–91. DOI: 10.1021/cr60281a005.
  • (a) Majer, P.; Randad, R. S. A Safe and Efficient Method for Preparation of N, N′-Unsymmetrically Disubstituted Ureas Utilizing Triphosgene. J. Org. Chem. 1994, 59, 1937–1938. DOI: 10.1021/jo00086a061. (b) Scialdone, M. A.; Shuey, S. W.; Soper, P.; Hamuro, Y.; Burns, D. M. Phosgenated p-Nitrophenyl(Polystyrene)Ketoxime or Phoxime Resin. A New Resin for the Solid-Phase Synthesis of Ureas via Thermolytic Cleavage of Oxime-Carbamates. J. Org. Chem. 1998, 63, 4802–4807. DOI: 10.1021/jo9716542.
  • Ozaki, S. Recent Advances in Isocyanate Chemistry. Chem. Rev. 1972, 72, 457–496. DOI: 10.1021/cr60279a002.
  • (a) Padiya, K. J.; Gavade, S.; Kardile, B.; Tiwari, M.; Bajare, S.; Mane, M.; Gaware, V.; Varghese, S.; Harel, D.; Kurhade, S. Unprecedented “in Water” Imidazole Carbonylation: Paradigm Shift for Preparation of Urea and Carbamate. Org. Lett. 2012, 14, 2814–2817. DOI: 10.1021/ol301009d. (b) Dube, P.; Nathel, N. F. F.; Vetelino, M.; Couturier, M.; Aboussafy, C. L.; Pichette, S.; Jorgensen, M. L.; Hardink, M. Carbonyldiimidazole-Mediated Lossen Rearrangement. Org. Lett. 2009, 11, 5622–5625. DOI: 10.1021/ol9023387. (c) Han, C.; Porco, J. A. Synthesis of Carbamates and Ureas Using Zr (IV)-Catalyzed Exchange Processes. Org. Lett. 2007, 9, 1517–1520. DOI: 10.1021/ol0702728. (d) Gallou, I.; Eriksson, M.; Zeng, X.; Senanayake, C.; Farina, V. Practical Synthesis of Unsymmetrical Ureas from Isopropenyl Carbamates. J. Org. Chem. 2005, 70, 6960–6963. DOI: 10.1021/jo0507643. (e) Bogolubsky, A. V.; Moroz, Y. S.; Mykhailiuk, P. K.; Granat, D. S.; Pipko, S. E.; Konovets, A. I.; Doroschuk, R.; Tolmachev, A. Bis(2,2,2-Trifluoroethyl) Carbonate as a Condensing Agent in One-Pot Parallel Synthesis of Unsymmetrical Aliphatic Ureas. ACS Comb. Sci. 2014, 16, 303–308. DOI: 10.1021/co500025f.
  • (a) Aube, J., Fehl, C., Liu, R., McLeod, M. C., Motiwala, H. F. (Eds.). Comprehensive Organic Synthesis II, 2nd ed.; Elsevier: Amsterdam, 2014. (b) Zhao, Y.-X.; Xie, T.; Yang, S.-K.; Yang, X.-J. A Novel C–N Migration Rearrangement Based on N–F Compounds for the Synthesis of N-Alkyl Diaryl Ureas. Eur. J. Org. Chem. 2020, 2020, 437–445. DOI: 10.1002/ejoc.201901602.
  • (a) Díaz, D. J.; Darko, A. K.; McElwee-White, L. Transition Metal-Catalyzed Oxidative Carbonylation of Amines to Ureas. Eur. J. Org. Chem. 2007, 2007, 4453–4465. DOI: 10.1002/ejoc.200700148. (b) Ragaini, F. Away from Phosgene: Reductive Carbonylation of Nitroarenes and Oxidative Carbonylation of Amines, Understanding the Mechanism to Improve Performance. Dalton Trans. 2009, 32, 6251–6266. DOI: 10.1039/b902425p. (c) Mancuso, R.; Raut, D. S.; Della Ca', N.; Fini, F.; Carfagna, C.; Gabriele, B. Catalytic Oxidative Carbonylation of Amino Moieties to Ureas, Oxamides, 2-Oxazolidinones, and Benzoxazolones. ChemSusChem 2015, 8, 2204–2211. DOI: 10.1002/cssc.201500343. (d) Ca’, N. D.; Bottarelli, P.; Dibenedetto, A.; Aresta, M.; Gabriele, B.; Salerno, G.; Costa, M. Palladium-Catalyzed Synthesis of Symmetrical Urea Derivatives by Oxidative Carbonylation of Primary Amines in Carbon Dioxide Medium. J. Catal. 2011, 282, 120–127. DOI: 10.1016/j.jcat.2011.06.003. (e) Jiang, T.; Ma, X.; Zhou, Y.; Liang, S.; Zhang, J.; Han, B. Solvent-Free Synthesis of Substituted Ureas from CO2 and Amines with a Functional Ionic Liquid as the Catalyst. Green Chem. 2008, 10, 465−469. DOI: 10.1039/b717868a. (f) Sun, D.-L.; Ye, J.-H.; Fang, Y.-X.; Chao, Z.-S. Green Synthesis of N,N″Dialkylureas from CO2 and Amines Using Metal Salts of Oxalates as Catalysts. Ind. Eng. Chem. Res. 2016, 55, 64–70. DOI: 10.1021/acs.iecr.5b02936.
  • (a) Srivastava, S. C.; Shrimal, A. K.; Srivastava, A. Reactions of (η-Methylcyclopentadienyl) Manganese Tricarbonyl with Primary Amines. J. Organomet. Chem. 1991, 414, 65–69. DOI: 10.1016/0022-328X(91)83242-V. (b) Li, K. T.; Peng, Y. J. Oxidative Carbonylation of Aniline Using Manganese-Based Catalysts. J. Catal. 1993, 143, 631–634. DOI: 10.1006/jcat.1993.1306.
  • (a) Bassoli, A.; Rindone, B.; Tollari, S.; Chioccara, F. Acyclic and Cyclic Urea Formation via the Cobalt-Catalysed Oxidative Carbonylation of Aromatic Primary Amines. J. Mol. Catal. 1990, 60, 41–48. DOI: 10.1016/0304-5102(90)85065-P. (b) Enquist, P. A.; Nilsson, P.; Edin, J.; Larhed, M. Super Fast Cobalt Carbonyl-Mediated Synthesis of Ureas. Tetrahedron Lett. 2005, 46, 3335–3339. DOI: 10.1016/j.tetlet.2005.03.076. (c) Park, J. H.; Yoon, J. C.; Chung, Y. K. Cobalt/Rhodium Heterobimetallic Nanoparticle-Catalyzed Oxidative Carbonylation of Amines in the Presence of Carbon Monoxide and Molecular Oxygen to Ureas. Adv. Synth. Catal. 2009, 351, 1233–1237. DOI: 10.1002/adsc.200900106.
  • Giannoccaro, P.; Nobile, C. F.; Mastrorilli, C.; Ravasio, J. Oxidative Carbonylation of Aliphatic Amines Catalysed by Nickel-Complexes. J. Organomet. Chem. 1991, 419, 251–258. DOI: 10.1016/0022-328X(91)86180-X.
  • (a) Fournier, J.; Bruneau, C.; Dixneuf, P. H.; Lécolier, S. Ruthenium-Catalyzed Synthesis of Symmetrical N,N'-Dialkylureas Directly from Carbon Dioxide and Amines. J. Org. Chem. 1991, 56, 4456–4458. DOI: 10.1021/jo00014a024. (b) Mulla, S. A. R.; Rode, C. V.; Kelkar, A. A.; Gupte, S. P. Activity of Homogeneous Transition Metal Catalysts for Oxidative Carbonylation of Aniline to N,N'-Diphenyl Urea. J. Mol. Catal. A: Chem. 1997, 122, 103–109. DOI: 10.1016/S1381-1169(97)00023-X. (c) Kim, S. H.; Hong, S. H. Ruthenium-Catalyzed Urea Synthesis Using Methanol as the C1 Source. Org. Lett. 2016, 18, 212–215. DOI: 10.1021/acs.orglett.5b03328. (d) Krishnakumar, V.; Chatterjee, B.; Gunanathan, C. Ruthenium-Catalyzed Urea Synthesis by N−H Activation of Amines. Inorg. Chem. 2017, 56, 7278–7284. DOI: 10.1021/acs.inorgchem.7b00962.
  • Bu, X.-B.; Wang, Z.; Wang, Y.-H.; Jiang, T.; Zhang, L.; Zhao, Y.-L. Rhodium-Catalyzed Oxidative Coupling Reaction of Isocyanides with Alcohols or Amines and Molecular Oxygen as Oxygen Source: Synthesis of Carbamates and Ureas. Eur. J. Org. Chem. 2017, 2017, 1132–1138. DOI: 10.1002/ejoc.201601484.
  • (a) Gupte, S. P.; Chaudhari, R. V. Oxidative Carbonylation of Aniline over PdC Catalyst: Effect of Promoters, Solvents, and Reaction Conditions. J. Catal. 1988, 114, 246–258. DOI: 10.1016/0021-9517(88)90028-0. (b) Choudary, B. M.; Rao, K. K.; Pirozhkov, S. D.; Lapidus, A. L. Conversion of Primary Amines to N,N'-Disubstituted Ureas Using Montmorillonitebipyridinepalladium (II)-Acetate and di-Tert Butyl Peroxide. Synth. Commun. 1991, 21, 1923–1927. DOI: 10.1080/00397919108021783. (c) Valli, V. L. K.; Alper, H. Oxidative Carbonylation of Aliphatic Mono-, Di-, and Triamines Catalyzed by Montmorillonite‒Bipyridinylpalladium(II) Acetate. Organometallics 1995, 14, 80–82. DOI: 10.1021/om00001a016. (d) Shi, F.; Deng, Y.; SiMa, T.; Yang, H. A Novel ZrO2–SO42− Supported Palladium Catalyst for Syntheses of Disubstituted Ureas from Amines by Oxidative Carbonylation. Tetrahedron Lett. 2001, 42, 2161–2163. DOI: 10.1016/S0040-4039(01)00124-1. (e) Chiarotto, I.; Feroci, M. Selective and Environmentally Friendly Methodologies Based on the Use of Electrochemistry for Fine Chemical Preparation: An Efficient Synthesis of N,N'-Disubstituted Ureas. J. Org. Chem. 2003, 68, 7137–7139. DOI: 10.1021/jo034750d. (f) Gabriele, B.; Salerno, G.; Mancuso, R.; Costa, M. Efficient Synthesis of Ureas by Direct Palladium-Catalyzed Oxidative Carbonylation of Amines. J. Org. Chem. 2004, 69, 4741–4750. DOI: 10.1021/jo0494634. (g) Orito, K.; Miyazawa, M.; Nakamura, T.; Horibata, A.; Ushito, H.; Nagasaki, H.; Yuguchi, M.; Yamashita, S.; Yamazaki, T.; Tokuda, M. Pd(OAc)2-Catalyzed Carbonylation of Amines. J. Org. Chem. 2006, 71, 5951–5958. DOI: 10.1021/jo060612n. (h) Zheng, S.-Z.; Peng, X.-G.; Liu, J.-M.; Sun, W.; Xia, C.-G. N-Heterocyclic Carbene-Palladium Complex Catalyzed Oxidative Carbonylation of Amines to Ureas. Chin. J. Chem. 2007, 25, 1065–1068. DOI: 10.1002/cjoc.200790196. (i) Ragaini, F.; Gasperini, M.; Cenini, S.; Arnera, L.; Caselli, A.; Macchi, P.; Casati, N. Mechanistic Study of the Palladium–Phenanthroline Catalyzed Carbonylation of Nitroarenes and Amines: Palladium–Carbonyl Intermediates and Bifunctional Effects. Chemistry 2009, 15, 8064–8077. DOI: 10.1002/chem.200801882. (j) Giannoccaro, P.; Ferragina, C.; Gargano, M.; Quaranta, E. Pd-Catalysed Oxidative Carbonylation of Amino Alcohols to N,N'-Bis (Hydroxyalkyl) Ureas under Mild Conditions Using Molecular Oxygen as the Oxidant. Appl. Catal. A 2010, 375, 78–84. DOI: 10.1016/j.apcata.2009.12.022. (k) Guan, Z. H.; Lei, H.; Chen, M.; Ren, Z. H.; Bai, Y.; Wang, Y. Y. Palladium‐Catalyzed Carbonylation of Amines: Switchable Approaches to Carbamates and N,N'‐Disubstituted Ureas. Adv. Synth. Catal. 2012, 354, 489–496. DOI: 10.1002/adsc.201100545. (l) Krogul, A.; Litwinienko, G. One Pot Synthesis of Ureas and Carbamates via Oxidative Carbonylation of Aniline-Type Substrates by CO/O2 Mixture Catalyzed by Pd-Complexes. J. Mol. Catal. A: Chem. 2015, 407, 204–211. DOI: 10.1016/j.molcata.2015.06.027. (m) Sara, R.; Peter, B.; Patrik, N.; Mats, L.; Luke, O.; Jonas, E. Synthesis of 11C-Labelled Ureas by Palladium (II)-Mediated Oxidative Carbonylation. Molecules 2017, 22, 1688. (n) Francesco, F.; Edoardo, B.; Claudia, G.; Doaa, R.; Fabio, R. Palladium/Iodide Catalyzed Oxidative Carbonylation of Aniline to Diphenylurea: Effect of Ppm Amounts of Iron Salts. J. Catal. 2019, 369, 257–266.
  • (a)McCusker, J. E.; Main, A. D.; Johnson, K. S.; Grasso, C. A.; McElwee-White, L. W(CO)6-Catalyzed Oxidative Carbonylation of Primary Amines to N,N'-disubstituted ureas in single or biphasic solvent systems. Optimization and functional group compatibility studies. J. Org. Chem. 2000, 65, 5216–5222. DOI: 10.1021/jo000364+. (b) Zhang, L.; Darko, A. K.; Johns, J. I.; McElwee-White, L. Catalytic Oxidative Carbonylation of Arylamines to Ureas with W(CO)6/I2 as Catalyst. Eur. J. Org. Chem. 2011, 2011, 6261–6268. DOI: 10.1002/ejoc.201100657.
  • (a) Zheng, S.; Li, F.; Liu, J.; Xia, C. A Novel and Efficient (NHC) CuI (NHC = N-Heterocyclic Carbene) Catalyst for the Oxidative Carbonylation of Amino Compounds. Tetrahedron Lett. 2007, 48, 5883–5886. DOI: 10.1016/j.tetlet.2007.06.049. (b) Casiello, M.; Iannone, F.; Cotugno, P.; Monopoli, A.; Cioffi, N.; Ciminale, F.; Trzeciak, A. M.; Nacci, A. Copper(II)-Catalysed Oxidative Carbonylation of Aminols and Aminesin Water: A Direct Access to Oxazolidinones, Ureas and Carbamates. J. Mol. Catal. A: Chem. 2015, 407, 8–14. DOI: 10.1016/j.molcata.2015.06.007.
  • Shi, F.; Deng, Y. Q. Polymer-Immobilized Gold Catalysts for the Efficient and Clean Syntheses of Carbamates and Symmetric Ureas by Oxidative Carbonylation of Aniline and Its Derivatives. J. Catal. 2002, 211, 548–551. DOI: 10.1016/S0021-9517(02)93772-3.
  • Pri-Bar, I.; Alper, H. Oxidative Coupling of Amines and Carbon Monoxide Catalyzed by Palladium Complexes. Mono-and Double Carbonylation Reactions Promoted by Iodine Compounds. Can. J. Chem. 1990, 68, 1544–1547. DOI: 10.1139/v90-238.
  • Giannoccaro, P. Palladium-Catalysed N,N'-Disubstituted Urea Synthesis by Oxidative Carbonylation of Amines under CO and O2 at Atmospheric Pressure. J. Organomet. Chem. 1987, 336, 271–278. DOI: 10.1016/0022-328X(87)87174-7.
  • Breitler, S.; Oldenhuis, N. J.; Fors, B. P.; Buchwald, S. L. Synthesis of Unsymmetrical Diarylureas via Pd-Catalyzed C-N Cross-Coupling Reactions. Org. Lett. 2011, 13, 3262–3265. DOI: 10.1021/ol201210t.
  • Vinogradova, E. V.; Fors, B. P.; Buchwald, S. L. Palladium-Catalyzed Cross-Coupling of Aryl Chlorides and Triflates with Sodium Cyanate: A Practical Synthesis of Unsymmetrical Ureas. J. Am. Chem. Soc. 2012, 134, 11132–11135. DOI: 10.1021/ja305212v.
  • Bjerglund, K.; Lindhardt, A. T.; Skrydstrup, T. Palladium-Catalyzed N-Acylation of Monosubstituted Ureas Using near-Stoichiometric Carbon Monoxide. J. Org. Chem. 2012, 77, 3793–3799. DOI: 10.1021/jo3000767.
  • Zhao, J.; Li, Z.; Yan, S.; Xu, S.; Wang, M.-A.; Fu, B.; Zhang, Z. Pd/C Catalyzed Carbonylation of Azides in the Presence of Amines. Org. Lett. 2016, 18, 1736–1739. DOI: 10.1021/acs.orglett.6b00381.
  • Ren, L.; Jiao, N. PdCl2 Catalyzed Efficient Assembly of Organic Azides, CO, and Alcohols under Mild Conditions: A Direct Approach to Synthesize Carbamates. Chem. Commun. (Camb) 2014, 50, 3706–3709. DOI: 10.1039/c4cc00538d.
  • Chen, B.; Peng, J. B.; Ying, J.; Qi, X.; Wu, X. F. A Palladium-Catalyzed Domino Procedure for the Synthesis of Unsymmetrical Ureas. Adv. Synth. Catal. 2018, 360, 2820–2824. DOI: 10.1002/adsc.201800496.
  • Wang, L.; Wang, H.; Li, G.; Min, S.; Xiang, F.; Liu, S.; Zheng, W. Pd/C-Catalyzed Domino Synthesis of Urea Derivatives Using Chloroform as the Carbon Monoxide Source in Water. Adv. Synth. Catal. 2018, 360, 4585–4593. DOI: 10.1002/adsc.201800954.
  • Mozaffari, M.; Nowrouzi, N. Palladium-Catalyzed Synthesis of Symmetrical and Unsymmetrical Ureas Using Chromium Hexacarbonyl as a Convenient and Safe Alternative Carbonyl Source. Eur. J. Org. Chem. 2019, 2019, 7541–7544. DOI: 10.1002/ejoc.201901273.
  • (a) Zhao, Q.; Szostak, M. Redox-Neutral Decarbonylative Cross-Couplings Coming of Age. ChemSusChem 2019, 12, 2983–2987. DOI: 10.1002/cssc.201900408. (b) Guo, L.; Rueping, M. Transition-Metal-Catalyzed Decarbonylative Coupling Reactions: Concepts, Classifications, and Applications. Chemistry 2018, 24, 7794–7809. DOI: 10.1002/chem.201704670. (c) Guo, L.; Rueping, M. Decarbonylative Cross-Couplings: Nickel Catalyzed Functional Group Interconversion Strategies for the Construction of Complex Organic Molecules. Acc. Chem. Res. 2018, 51, 1185–1195. DOI: 10.1021/acs.accounts.8b00023.
  • (a) Chen, C.; Shang, G.; Zhou, J.; Yu, Y.; Li, B.; Peng, J. Modular Synthesis of Benzimidazole-Fused Phenanthridines from 2′Arylbenzimidazoles and o-Dibromoarenes by a Palladium-Catalyzed Cascade Process. Org. Lett. 2014, 16, 1872–1875. DOI: 10.1021/ol500248h. (b) Zhao, G.; Chen, C.; Yue, Y.; Yu, Y.; Peng, J. Palladium(II)-Catalyzed Sequential C−H Arylation/Aerobic Oxidative C–H Amination: One-Pot Synthesis of Benzimidazole-Fused Phenanthridines from 2-Arylbenzimidazoles and Aryl Halides. J. Org. Chem. 2015, 80, 2827–2834. DOI: 10.1021/jo502632b. (c) Yu, Y.; Yue, Y.; Wang, D.; Li, X.; Chen, C.; Peng, J. Modular Synthesis of Quinazolinone-Fused Phenanthridinones by a Palladium-Catalyzed Cascade C–H/N–H Arylation Process. Synthesis 2016, 48, 3941–3950. DOI: 10.1055/s-0035-1561481. (d) Li, X.; Chen, X.; Wang, H.; Chen, C.; Sun, P.; Mo, B.; Peng, J. Palladium-Catalyzed Tandem One-Pot Synthesis of π-Expanded Imidazoles through Sequential Heck and Oxidative Amination Reaction. Org. Biomol. Chem. 2019, 17, 4014–4023. DOI: 10.1039/C9OB00482C.
  • Tsukano, C.; Okuno, M.; Takemoto, Y. Palladium-Catalyzed Amidation by Chemoselective C(sp3)H Activation: Concise Route to Oxindoles Using a Carbamoyl Chloride Precursor. Angew. Chem. Int. Ed. Engl. 2012, 51, 2763–2766. DOI: 10.1002/anie.201108889.
  • (a) Amatore, C.; Carre, E.; Jutand, A.; M'Barki, M. A.; Meyer, G. Evidence for the Ligation of Palladium(0) Complexes by Acetate Ions: Consequences on the Mechanism of Their Oxidative Addition with Phenyl Iodide and PhPd(OAc)(PPh3)2 as Intermediate in the Heck Reaction. Organometallics 1995, 14, 5605–5614. DOI: 10.1021/om00012a029. (b) Amatore, C.; Azzabi, M.; Jutand, A. Role and Effects of Halide Ions on the Rates and Mechanisms of Oxidative Addition of Iodobenzene to Low-Ligated Zerovalent Palladium Complexes Pd0(PPh3)2. J. Am. Chem. Soc. 1991, 113, 8375–8384. DOI: 10.1021/ja00022a026.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.