Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 20
786
Views
5
CrossRef citations to date
0
Altmetric
Articles

A simple method for the synthesis of sulfonic esters

, , &
Pages 3133-3148 | Received 25 Apr 2020, Published online: 21 Jul 2020

References

  • (a) Yan, L.; Muller, C. E. Preparation, Properties, Reactions, and Adenosine Receptor Affinities of Sulfophenylxanthine Nitrophenyl Esters: Toward the Development of Sulfonic Acid Prodrugs with Peroral Bioavailability. J. Med. Chem. 2004, 47, 1031–1043. DOI: 10.1021/jm0310030. (b) Zuse, A.; Schmidt, P.; Baasner, S.; Bohm, K. J.; Muller, K.; Gerlach, M.; Gunther, E. G.; Unger, E.; Prinz, H. Sulfonate Derivatives of Naphtho[2,3-b]Thiophen-4(9H)-One and 9(10H)-Anthracenone as Highly Active Antimicrotubule Agents. Synthesis, Antiproliferative Activity, and Inhibition of Tubulin Polymerization. J. Med. Chem. 2007, 50, 6059–6066. DOI: 10.1021/jm0708984. (c) Pisani, L.; Barletta, M.; Soto-Otero, R.; Nicolotti, O.; Mendez-Alvarez, E.; Catto, M.; Introcaso, A.; Stefanachi, A.; Cellamare, S.; Altomare, C.; Carotti, A. Discovery, Biological Evaluation, and Structure–Activity and − Selectivity Relationships of 6′-Substituted (E)-2-(Benzofuran-3(2H)-Ylidene)-N-Methylacetamides, a Novel Class of Potent and Selective Monoamine Oxidase Inhibitors. J. Med. Chem. 2013, 56, 2651–2664. DOI: 10.1021/jm4000769.
  • (a) Hou, S.; Yi, Y. W.; Kang, H. J.; Zhang, L.; Kim, H. J.; Kong, Y.; Liu, Y.; Wang, K.; Kong, H.-S.; Grindrod, S.; et al. Novel Carbazole Inhibits Phospho-STAT3 Through Induction of Protein-Tyrosine Phosphatase PTPN6. J. Med. Chem. 2014, 57, 6342–6353. DOI: 10.1021/jm4018042. (b) Park, J.-H.; Lee, G.-E.; Lee, S.-D.; Hien, T. T.; Kim, S.; Yang, J. W.; Cho, J.-H.; Ko, H.; Lim, S.-C.; Kim, Y.-G.; et al. Discovery of Novel 2,5-Dioxoimidazolidine-Based P2X(7) Receptor Antagonists as Constrained Analogues of KN62. J. Med. Chem. 2015, 58, 2114–2134. DOI: 10.1021/jm500324g.
  • Marquez, V. E.; Sharma, R.; Wang, S.; Lewin, N. E.; Blumberg, P. M.; Kim, I.; Lee, J. Conformationally Constrained Analogues of Diacylglycerol (DAG). 14. Dissection of the Roles of the sn-1 and sn-2 Carbonyls in DAG Mimetics by Isopharmacophore Replacement. Bioorg. Med. Chem. Lett. 1998, 8, 1757–1762. DOI: 10.1016/S0960-894X(98)00307-2.
  • (a) Larock, R. C. Comprehensive Organic Transformations: A Guide to Functional Group Preparations; Wiley-VCH: Weinheim, 1997. (b) Horning, J. E. C. In Synthetic Organic Chemistry; Vol. 3; Wagner, R. B.; Zokk, H. D., Eds.; Wiley: New York, 1953. (c) Sandler, S. R.; Karo, W. Organic Functional Group Preparations; 2nd ed., Vol. 1; Academic Press: New York, 1983.
  • (a) Kabalka, G. W.; Varma, M.; Varma, R. S.; Srivastava, P. C.; Knapp, F. F. The Tosylation of Alcohols. J. Org. Chem. 1986, 51, 2386–2388. DOI: 10.1021/jo00362a044. (b) Cragg, P. J. A Practical Guide to Supramolecular Chemistry; Wiley: Chichester, 2005.
  • (a) Pauff, S. M.; Miller, S. C. Synthesis of near-IR Fluorescent Oxazine Dyes with Esterase-Labile Sulfonate Esters. Org. Lett. 2011, 13, 6196–6199. DOI: 10.1021/ol202619f. (b) Pauff, S. M.; Miller, S. C. A Trifluoroacetic Acid-Labile Sulfonate Protecting Group and Its Use in the Synthesis of a Near-IR Fluorophore. J. Org. Chem. 2013, 78, 711–716. DOI: 10.1021/jo302065u.
  • Carey, J. S.; Laffan, D.; Thomson, C.; Williams, M. T. Analysis of the Reactions Used for the Preparation of Drug Candidate Molecules. Org. Biomol. Chem. 2006, 4, 2337–2347. DOI: 10.1039/b602413k.
  • Dado, G. P.; Knaggs, E. A.; Nepras, M. J. Kirk-Othmer Encyclopedia of Chemical Technology; New York: John Wiley & Sons, Inc., 2000, DOI: 10.1002/0471238961.1921120611140107.a01.pub2.
  • Roberts, D. W. Optimisation of the Linear Alkyl Benzene Sulfonation Process for Surfactant Manufacture. Org. Process Res. Dev. 2003, 7, 172–184. DOI: 10.1021/op020088w.
  • (a) Zhang, M.; Moore, J. D.; Flynn, D. L.; Hanson, P. R. Development of High-Load, Soluble Oligomeric Sulfonate Esters via ROM Polymerization: application to the Benzylation of Amines. Org. Lett. 2004, 6, 2657–2660. DOI: 10.1021/ol049209y. (b) Mori, H.; Kudo, E.; Saito, Y.; Onuma, A.; Morishima, M. RAFT Polymerization of Vinyl Sulfonate Esters for the Controlled Synthesis of Poly(Lithium Vinyl Sulfonate) and Sulfonated Block Copolymers. Macromolecules 2010, 43, 7021–7028. DOI: 10.1021/ma100905w.
  • (a) Li, F.; Liu, T.-X.; Wang, G.-W. Synthesis of [60]Fullerene-Fused Sultones via Sulfonic Acid Group-Directed C-H Bond Activation. Org. Lett. 2012, 14, 2176–2179. DOI: 10.1021/ol3007452. (b) DeBergh, J. R.; Niljianskul, N.; Buchwald, S. L. Synthesis of Aryl Sulfonamides via Palladium-Catalyzed Chlorosulfonylation of Arylboronic Acids. J. Am. Chem. Soc. 2013, 135, 10638–10641. DOI: 10.1021/ja405949a. (c) Avitabile, B. G.; Smith, C. A.; Judd, D. B. Pentafluorophenyl Sulfonate Ester as a Protecting Group for the Preparation of Biaryl- and Heterobiaryl Sulfonate Esters. Org. Lett. 2005, 7, 843–846. DOI: 10.1021/ol047422o. (d) Elder, D.; Facchine, K. L.; Levy, J. N.; Parsons, R.; Ridge, D.; Semo, L.; Teasdale, A. An Approach to Control Strategies for Sulfonate Ester Formation in Pharmaceutical Manufacturing Based on Recent Scientific Understanding. Org. Process Res. Dev. 2012, 16, 1707–1710. DOI: 10.1021/op300216x.
  • (a) Betts, L. M.; Tam, N. C.; Kabir, S. M. H.; Langler, R. F.; Crandall, I. Ether Aryl Sulfonic Acid Esters with Improved Antimalarial/Anticancer Activities. Aust. J. Chem. 2006, 59, 277–282. DOI: 10.1071/CH04299. (b) Maddaluno, J.; Durandetti, M. Dimerization of Aryl Sulfonates by in Situ Generated Nickel(0). Synlett 2015, 26, 2385–2388. − DOI: 10.1055/s-0035-1560712.
  • (a) Suarez, L.; Diez, M. A.; Garcia, R.; Riera, F. A. Membrane Technology for the Recovery of Detergent Compounds: A Review. J. Ind. Eng. Chem 2012, 18, 1859–1873. DOI: 10.1016/j.jiec.2012.05.015. (b) Lu, J. R.; Thomas, R. K.; Penfold, J. Surfactant Layers at the Air/Water Interface: structure and Composition. Adv. Colloid Interface Sci. 2000, 84, 143–304. DOI: 10.1016/S0001-8686(99)00019-6.
  • (a) Nguyen, H. N.; Huang, X.; Buchwald, S. L. The First General Palladium Catalyst for the Suzuki-Miyaura and Carbonyl Enolate Coupling of Aryl Arenesulfonates. J. Am. Chem. Soc. 2003, 125, 11818–11819. DOI: 10.1021/ja036947t. (b) Tang, Z.; Hu, Q. Room-Temperature Ni0-Catalyzed Cross-Coupling Reactions of Aryl Arenesulfonates with Arylboronic Acids. J. Am. Chem. Soc. 2004, 126, 3058–3059. DOI: 10.1021/ja038752r. (c) Yeung, P. Y.; So, C. M.; Lau, C. P.; Kwong, F. Y. A Mild and Efficient Palladium-Catalyzed Cyanation of Aryl Mesylates in Water or tBuOH/Water. Angew. Chem 2010, 122, 9102–9106. DOI: 10.1002/ange.201005121. (d) Gooßen, L. J.; Rodríguez, Nuria.; Lange, Paul P.; Linder, Christophe. Decarboxylative Cross-Coupling of Aryl Tosylates with Aromatic Carboxylate Salts. Angew. Chem. Int. Ed. Engl. 2010, 49, 1111–1114. DOI: 10.1002/anie.200905953.
  • (a) Cho, C. H.; Yun, H. S.; Park, K. Nickel 0-Catalyzed Cross-Coupling of Alkyl Arenesulfonates with Aryl Grignard Reagents. J. Org. Chem. 2003, 68, 3017–3025. DOI: 10.1021/jo026449n. (b) Cai, C.; Rivera, N. R.; Balsells, J.; Sidler, R. R.; McWilliams, J. C.; Shultz, C. S.; Sun, Y. An Efficient Catalyst for Pd-Catalyzed Carbonylation of Aryl Arenesulfonates. Org. Lett. 2006, 8, 5161–5164. DOI: 10.1021/ol062208g. (c) Miller, S. C. Profiling Sulfonate Ester Stability: identification of Complementary Protecting Groups for Sulfonates. J. Org. Chem. 2010, 75, 4632–4635. DOI: 10.1021/jo1007338.
  • Stang, P. J. Alkynyl Carboxylate, Phosphate, and Sulfonate Esters. Acc. Chem. Res. 1991, 24, 304–310. DOI: 10.1021/ar00010a004.
  • Elder, D. P.; Delaney, E.; Teasdale, A.; Eyley, S.; Reif, V. D.; Jacq, K.; Facchine, K. L.; Oestrich, R. S.; Sandra, P.; David, F. The Utility of Sulfonate Salts in Drug Development. J. Pharm. Sci. 2010, 99, 2948–2961. DOI: 10.1002/jps.22058.
  • (a) Wang, P.; Min, J.; Nwachukwu, J. C.; Cavett, V.; Carlson, K. E.; Guo, P.; Zhu, M.; Zheng, Y.; Dong, C.; Katzenellenbogen, J. A.; et al. Identification and Structure-Activity Relationships of a Novel Series of Estrogen Receptor Ligands Based on 7-Thiabicyclo[2.2.1]Hept-2-Ene-7-Oxide. J. Med. Chem. 2012, 55, 2324–2341. DOI: 10.1021/jm201556r. (b) Zhou, H.; Comninos, J. S.; Stossi, F.; Katzenellenbogen, B. S.; Katzenellenbogen, J. A. Synthesis and Evaluation of Estrogen Receptor Ligands with Bridged Oxabicyclic Cores Containing a Diarylethylene Motif: estrogen Antagonists of Unusual Structure. J. Med. Chem. 2005, 48, 7261–7274. DOI: 10.1021/jm0506773.
  • Stang, P. J.; Treptow, W. L. Synthesis and Antitumor Activity of Simple Vinyl and Alpha-Methylene-Gamma-Butyrolactone Sulfonate Esters and Silyl Enol Ethers. J. Med. Chem. 1981, 24, 468–472. DOI: 10.1021/jm00136a019.
  • Tondi, D.; Venturelli, A.; Ferrari, S.; Ghelli, S.; Costi, M. P. Improving Specificity vs Bacterial Thymidylate Synthases through N-Dansyl Modulation of Didansyltyrosine. J. Med. Chem. 2005, 48, 913–916. − DOI: 10.1021/jm0491445.
  • Cyr, L.; Langler, R. F.; Crandall, I.; Lavigne, C. Antiproliferative Effects of a Series of Novel Synthetic Sulfonate Esters on Human Breast Cancer Cell Line MCF-7. Anticancer Res 2007, 27, 1437–1448.
  • Hoyle, J. In The Chemistry of Sulphonic Acids, Esters and Their Derivatives; Patai, S.; Rappoport, Z., Eds.; Wiley: Chichester. 1991, pp 351–399
  • Tamaddon, F.; Nasiri, A.; Farokhi, S. CsF–Celite as an Efficient Heterogeneous Catalyst for Sulfonylation and Desulfonylation of Heteroatoms. Catal. Commun. 2011, 12, 1477–1482. DOI: 10.1016/j.catcom.2011.04.005.
  • (a) Huang, J.; Widlanski, T. S. Facile Synthesis of Sulfonyl Chlorides. Tetrahedron Lett. 1992, 33, 2657–2660. DOI: 10.1016/S0040-4039(00)79050-2. (b) Choe, Y. S.; Katzenellenbogen, J. A. Tetrabutylammonium Fluoride-Induced Conversion of Tresylates to Mesylates. Tetrahedron Lett 1993, 34, 1579–1580. DOI: 10.1016/0040-4039(93)85011-K. (c) Heiner, T.; Kozhushkov, S. I.; Noltemeyer, M.; Haumann, T.; Boese, R.; de Meijere, A. Intramolecular Diels-Alder Reactions of Furans with a Merely Strain-Activated Tetrasubstituted Alkene: Bicyclopropylidene. Tetrahedron 1996, 52, 12185–12196. DOI: 10.1016/0040-4020(96)00720-X.
  • Dufresne, C.; Gallant, M.; Gareau, Y.; Ruel, R.; Trimble, L.; Labelle, M. Synthesis of Montelukast (MK-0476) Metabolic Oxidation Products. J. Org. Chem. 1996, 61, 8518–8525. DOI: 10.1021/jo9615817.
  • Wang, Y.; Deng, L.; Deng, Y.; Han, J. Copper-Catalyzed Multicomponent Reaction of DABCO·(SO2)2, Alcohols, and Aryl Diazoniums for the Synthesis of Sulfonic Esters. J. Org. Chem. 2018, 83, 4674–4680. DOI: 10.1021/acs.joc.8b00447.
  • Padmapriya, A. A.; Just, G.; Lewis, N. G. A New Method for the Esterification of Sulphonic Acids. Synth. Commun. 1985, 15, 1057–1062. DOI: 10.1080/00397918508076842.
  • (a) Al-Horani, R. A.; Desai, U. R. Chemical Sulfation of Small Molecules – Advances and Challenges. Tetrahedron 2010, 66, 2907–2918. DOI: 10.1016/j.tet.2010.02.015. (b) Kelly, D. Sulfur Trioxide-Amine Adducts. Synlett 2003, 14, 2263–2264. DOI: 10.1055/s-2003-42110.
  • Bahrami, K.; Khodaei, M. M.; Abbasi, J. Synthesis of Sulfonamides and Sulfonic Esters via Reaction of Amines and Phenols with Thiols Using H2O2–POCl3 System. Tetrahedron 2012, 68, 5095–5101. DOI: 10.1016/j.tet.2012.04.040.
  • Hong, X.; Tan, Q.; Liu, B.; Xu, B. Isocyanide-Induced Activation of Copper Sulfate: Direct Access to Functionalized Heteroarene Sulfonic Esters. Angew. Chem. Int. Ed. Engl. 2017, 56, 3961–3965. DOI: 10.1002/anie.201612565.
  • Tribby, A. L.; Rodríguez, I.; Shariffudin, S.; Ball, N. D. Pd-Catalyzed Conversion of Aryl Iodides to Sulfonyl Fluorides Using SO2 Surrogate DABSO and Selectfluor. J. Org. Chem. 2017, 82, 2294–2299. DOI: 10.1021/acs.joc.7b00051.
  • Singh, A. K.; Yi, H.; Zhang, G.; Bian, C.; Pei, P.; Lei, A. Photoinduced Oxidative Cross-Coupling for O–S Bond Formation: A Facile Synthesis of Alkyl Benzenesulfonates. Synlett 2017, 28, 1558–1563. DOI: 10.1055/s-0036-1588728.
  • Vignola, N.; Dahmen, S.; Enders, D.; Brase, S. Efficient Synthesis of Sulfonic, Phosphoric, and Phosphinic Esters Employing Alkylating Polymer-Bound Reagents. J. Comb. Chem. 2003, 5, 138–144. DOI: 10.1021/cc0200787.
  • Gao, J.; Pan, X.; Liu, J.; Lai, J.; Chang, L.; Yuan, G. Iodine-Induced Synthesis of Sulfonate Esters from Sodium Sulfinates and Phenols under Mild Conditions. RSC Adv. 2015, 5, 27439–27442. DOI: 10.1039/C5RA00724K.
  • Meshram, G. A.; Patil, V. D. A Simple and Efficient Method for Sulfonylation of Amines, Alcohols and Phenols with Cupric Oxide under Mild Conditions. Tetrahedron Lett. 2009, 50, 1117–1121. DOI: 10.1016/j.tetlet.2008.12.085.
  • (a) Martinelli, MichaelJ.; Vaidyanathan, Rajappa.; Pawlak, JosephM.; Nayyar, NareshK.; Dhokte, UlhasP.; Doecke, ChristopherW.; Zollars, LisaMH.; Moher, EricD.; Khau, VienVan.; Košmrlj, Berta. Catalytic Regioselective Sulfonylation of α-Chelatable Alcohols: Scope and Mechanistic Insight. J. Am. Chem. Soc. 2002, 124, 3578–3585. DOI: 10.1021/ja016031r. (b) Martinelli, M. J.; Nayyar, N. K.; Moher, E. D.; Dhokte, U. P.; Pawlak, J. M.; Vaidyanathan, R. Dibutyltin Oxide Catalyzed Selective Sulfonylation of α-Chelatable Primary Alcohols. Org. Lett. 1999, 1, 447–450. DOI: 10.1021/ol990658l. (c) Yuasa, K.; Enomoto, K.; Maekawa, Y.; Kato, J.; Yamashita, T.; Yoshida, M. Electron-Beam-Induced Fries Rearrangement and Oxidation Reactions of Sulfonic Acid Esters in Crystalline State. J. Photopol. Sci. Technol. 2004, 17, 21–27. DOI: 10.2494/photopolymer.17.21. (d) Quan, Z.; Jing, F.; Zhang, Z.; Da, Y.; Wang, X. Cross-Coupling Reactions of Pyrimidin-2-yl Sulfonates with Phenols and Anilines: An Efficient Approach to C2-Functionalized Pyrimidines. Chin. J. Chem. 2013, 31, 1495–1502. DOI: 10.1002/cjoc.201300536.
  • Song, G.; Cai, Y.; Peng, Y. Amino-Functionalized Ionic Liquid as a Nucleophilic Scavenger in Solution Phase Combinatorial Synthesis. J. Comb. Chem. 2005, 7, 561–566. DOI: 10.1021/cc049844v.
  • (a) Oliverio, M.; Costanzo, P.; Paonessa, R.; Nardi, M.; Procopio, A. Catalyst-Free Tosylation of Lipophilic Alcohols in Water. RSC Adv. 2013, 3, 2548–2550. DOI: 10.1039/c2ra23067d. (b) Lakrout, Salah.; K'tir, Hacène.; Amira, Aïcha.; Berredjem, Malika.; Aouf, Nour-Eddine. A Simple and Eco-Sustainable Method for the Sulfonylation of Amines under Microwave-Assisted Solvent-Free Conditions. RSC Adv. 2014, 4, 16027–16032. DOI: 10.1039/C4RA01346H. (c) Zhao, N.; Li, Y.; Wang, Y.; Wang, J. A Facile and Efficient Synthesis of Aryl Toluenesulfonhydrazides and Aryl Toluenesulfonates under Solvent-Free Conditions. J. Sulfur. Chem. 2006, 27, 427–432. DOI: 10.1080/17415990600863752. (d) Xu, L.; Xia, C. Solvent‐Free Synthesis of Aryl Tosylates under Microwave Activation. Syn. Commun 2004, 34, 1199–1205. DOI: 10.1081/SCC-120030306.
  • Carr, M. H.; Brown, H. P. p-Alkoxybenzenesulfonic Acid Esters. J. Am. Chem. Soc. 1947, 69, 1170–1172. DOI: 10.1021/ja01197a052.
  • Kametani, T.; Takahashi, K.; Ogasawara, K. A Novel Methylsulfonation of Hydroxy or Alkoxy Aromatics with Methyl Fluorosulfonate. Synthesis 1972, 1972, 473–474. DOI: 10.1055/s-1972-21901.
  • Jackman, L. M.; Lange, B. C. Methylation of Lithioisobutyrophenone in Weakly Polar Aprotic Solvents. The Effect of Aggregation. J. Am. Chem. Soc. 1981, 103, 4494–4499. DOI: 10.1021/ja00405a034.
  • Brinchi, L.; Profio, P. D.; Germani, R.; Savelli, G.; Spreti, N.; Bunton, C. A. The Hammett Equation and Micellar Effects on SN2 Reactions of Methyl Benzenesulfonates ?ms the Role of Micellar Polarity. Eur. J. Org. Chem. 2000, 2000, 3849–3854. DOI: 10.1002/1099-0690(200012)2000:23<3849::AID-EJOC3849>3.0.CO;2-P.
  • Ninomiya, S. H. I. N. I. C. H. I.; Kohda, K. O. H. F. U. K. U.; Kawazoe, Y. U. T. A. K. A. Studies on Chemical Carcinogens and Mutagens. XXV. Chemoselectivity of Alkyl Sulfonates toward 4-(p-Nitrobenzyl)Pyridine (NBP) in Phosphate Buffer. Chem. Pharm. Bull. 1984, 32, 1326–1332. DOI: 10.1248/cpb.32.1326.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.