Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 22
189
Views
1
CrossRef citations to date
0
Altmetric
Articles

Facile access to chiral β-homoglutamic acid from 3-cyclohexene-carboxylic acid

, , , , ORCID Icon &
Pages 3475-3480 | Received 09 Jul 2020, Published online: 17 Aug 2020

References

  • (a) Cabrele, C.; Martinek, T. A.; Reiser, O.; Berlicki, Ł. Peptides Containing β-Amino Acid Patterns: Challenges and Successes in Medicinal Chemistry. J. Med. Chem. 2014, 57, 9718–9739. DOI: 10.1021/jm5010896;. (b) Del Borgo, M. P.; Kulkarni, K.; Aguilar, M.-I. Using beta;-Amino Acids and beta;-Peptide Templates to Create Bioactive Ligands and Biomaterials. Curr. Pharm. Des. 2017, 23, 3772–3785. DOI: 10.2174/1381612823666170622110654;. (c) Fulop, F.; Martinek, T. A.; Toth, G. K. Application of Alicyclic beta-Amino acids in Peptide Chemistry. Chem. Soc. Rev. 2006, 35, 323–334. DOI: 10.1039/b501173f;. (d) Fleming, S.; Ulijn, R. V. Design of Nanostructures Based on Aromatic Peptide Amphiphiles. Chem. Soc. Rev. 2014, 43, 8150–8177. DOI: 10.1039/c4cs00247d;. (e) Du, X.; Zhou, J.; Shi, J.; Xu, B. Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials. Chem. Rev. 2015, 115, 13165–13307. DOI: 10.1021/acs.chemrev.5b00299;. (f) Reddy, K. R.; Sridhar, G.; Sharma, G. V. M. Synthesis of β3-Amino acid and Peptides from D-Ribose. Synth. Commun. 2018, 48, 1487–1493. DOI: 10.1080/00397911.2018.1455213;. (g) Bhalla, J.; Bari, S. S.; Banik, B. K.; Bhalla, A. Diastereoselective Synthesis of Novel 3-Aryloxy/alkoxy-4-benzothiazolylpyrazolyl-β-lactams: Potential Synthons for Novel Aminoacids/nanocopolymers. Synth. Commun. 2017, 47, 1955–1962. DOI: 10.1080/00397911.2017.1357186;. (h) Sridhar, G.; Hanumaiah, M.; Sharma, G. V. M. Synthesis of Novel Pyran β-Amino Acid and 5,6-Dihydro-2h-pyran β-Aminoxy Acid from Carbohydrate Derivatives. Synth. Commun. 2015, 45, 1768–1776. DOI: 10.1080/00397911.2015.1043018;. (i) Pan, X.; Bai, S.; Yu, W.; Ding, D.; Zhao, D.; Liu, F. Efficient Synthesis of 3-(R)-boc-amino-4-(2,4,5-trifluorophenyl)butyric Acid. Synth. Commun. 2015, 45, 1451–1456. DOI: 10.1080/00397911.2015.1028552.
  • (a) Tabata, Y.; Takagaki, K.; Uji, H.; Kimura, S. Piezoelectric Property of Bundled Peptide Nanotubes Stapled by Bis-cyclic-β-peptide. J. Pept. Sci. 2019, 25, e3134, DOI: 10.1002/psc.3134;. (b) Katoh, T.; Suga, H. Ribosomal Incorporation of Consecutive β-Amino Acids. J. Am. Chem. Soc. 2018, 140, 12159–12167. DOI: 10.1021/jacs.8b07247;. (c) Fears, K. P.; Kolel-Veetil, M. K.; Barlow, D. E.; Bernstein, N.; So, C. R.; Wahl, K. J.; Li, X.; Kulp, I. I. I. J. L.; Latour, R. A.; Clark, T. D. High-Performance Nanomaterials Formed by Rigid yet Extensible Cyclic β-Peptide Polymers. Nat. Commun. 2018, 9, 1–8. DOI: 10.1038/s41467-018-06576-5;. (d) Kirkland, T. A.; Adler, M.; Bauman, J. G.; Chen, M.; Haeggström, J. Z.; King, B.; Kochanny, M. J.; Liang, A. M.; Mendoza, L.; Phillips, G. B.; et al. Synthesis of Glutamic Acid Analogs as Potent Inhibitors of Leukotriene A4 Hydrolase. Bioorg. Med. Chem. 2008, 16, 4963–4983. DOI: 10.1016/j.bmc.2008.03.042.
  • Beaulieu, F.; Arora, J.; Veith, U.; Taylor, N. J.; Chapell, B. J.; Snieckus, V. 1,3-Asymmetric Induction via 1,5-Hydrogen Atom Translocation Reactions. Highly Enantioselective Synthesis of β-Substituted β-Amino Acids. J. Am. Chem. Soc. 1996, 118, 8727–8728. DOI: 10.1021/JA961484V.
  • Yu, S.; Ishida, H.; Juarez-Garcia, M. E.; Bode, J. W. Unified Synthesis of Enantiopure β2h, β3h and β2,3-Amino Acids. Chem. Sci. 2010, 1, 637–641. DOI: 10.1039/c0sc00317d.
  • (a) Subasinghe, N.; Schulte, M.; Chan, M. Y. M.; Roon, R. J.; Koerner, J. F.; Johnson, R. L. Synthesis of Acyclic and Dehydroaspartic Acid Analogs of Ac-Asp-Glu-OH and Their Inhibition of Rat Brain N-Acetylated α-Linked Acidic Dipeptidase (NAALA Dipeptidase). J. Med. Chem. 1990, 33, 2734–2744. DOI: 10.1021/jm00172a009;. (b) Gung, B. W.; Zou, D.; Stalcup, A. M.; Cottrell, C. E. Characterization of a Water-Soluble, Helical β-Peptide. J. Org. Chem. 1999, 64, 2176–2177. DOI: 10.1021/jo981070f;. (c) Gung, B. W.; Zou, D.; Miyahara, Y. Synthesis of a Hybrid Peptide with Both α- and β-Amino Acid Residues: Toward a New β-Sheet Nucleator. Tetrahedron. 2000, 56, 9739–9746. DOI: 10.1016/S0040-4020(00)00881-4.
  • Sato, K.; Kubota, k. Process for producing optically active carboxylic acid. Patent. WO2010067824A1. 2010. Daiichi Sankyo Co Ltd [JP]. 2010.06.17. 32pp.
  • Dey, S.; Lo, H.-J.; Wong, C.-H. Programmable One-Pot Synthesis of Heparin Pentasaccharide Fondaparinux. Org. Lett. 2020, 22, 4638–4642. DOI: 10.1021/acs.orglett.0c01386.
  • Dey, S.; Lo, H.-J.; Wong, C.-H. An Efficient Modular One-Pot Synthesis of Heparin-Based Anticoagulant Idraparinux. J. Am. Chem. Soc. 2019, 141, 10309–10314. DOI: 10.1021/jacs.9b03266.
  • (a) Spahn, H.; Langguth, P. Chiral Amines Derived from 2-Arylpropionic Acids: novel Reagents for the Liquid Chromatographic (LC) Fluorescence Assay of Optically Active Carboxylic Acid Xenobiotics. Pharm. Res. 1990, 7, 1262–1268. DOI: 10.1023/A:1015985805042;. (b) Leuser, H.; Perrone, S.; Liron, F.; Kneisel, F. F.; Knochel, P. Highly Enantioselective Preparation of Tertiary Alcohols and Amines by Copper-Mediated Diastereoselective Allylic SN2' Substitutions. Angew. Chem. Int. Ed. 2005, 44, 4627–4631. DOI: 10.1002/anie.200500672;. (c) Leogane, O.; Lebel, H. One-Pot Curtius Rearrangement Processes from Carboxylic Acids. Synthesis 2009, 2009, 1935–1940. DOI: 10.1055/s-0029-1216795;. (d) Iosub, V.; Haberl, A. R.; Leung, J.; Tang, M.; Vembaiyan, K.; Parvez, M.; Back, T. G. Enantioselective Synthesis of α-Quaternary Amino Acid Derivatives by Sequential Enzymatic Desymmetrization and Curtius Rearrangement of α,α-Disubstituted Malonate Diesters. J. Org. Chem. 2010, 75, 1612–1619. DOI: 10.1021/jo902584r.
  • Guo, J. Y.; Zhong, C. H.; He, Z. Y.; Tian, S. K. Benzyne-Promoted Curtius-Type Rearrangement of Acyl Hydrazides in the Presence of Nucleophiles. Asian J. Org. Chem. 2018, 7, 119–122. DOI: 10.1002/ajoc.201700598.
  • The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak OD-H, hexane/isopropanol/CF3COOH (90/10/0.3), 1.0 mL/min, λ = 210 nm, tS=21.2 min, tR=23.3 min].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.