Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 23
315
Views
9
CrossRef citations to date
0
Altmetric
Synthetic Communications Reviews

Advancements in chemical methodologies for the synthesis of 3-aroylimidazo[1,2-a]pyridines: an update of the decade

&
Pages 3507-3534 | Received 16 Jun 2020, Published online: 08 Aug 2020

References

  • Dymin’ska, L. Imidazopyridines as a Source of Biological Activity and Their Pharmacological potentials-Infrared and Raman Spectroscopic Evidence of Their Content in Pharmaceuticals and Plant Materials. Bioorg. Med. Chem. 2015, 23, 6087–6099. DOI: 10.1016/j.bmc.2015.07.045.
  • Gunja, N. In the Zzz Zone: The Effects of Z-Drugs on Human Performance and Driving. J. Med. Toxicol. 2013, 9, 163–171. DOI: 10.1007/s13181-013-0294-y.
  • Harrison, T. S.; Keating, G. M. Zolpidem: A Review of Its Use in the Management of Insomnia. CNS Drugs. 2005, 19, 65–89. DOI: 10.2165/00023210-200519010-00008.
  • Rival, Y.; Grassy, G.; Michel, G. Synthesis and Antibacterial Activity of Some imidazo[1,2-a]pyrimidine Derivatives. Chem. Pharm. Bull. 1992, 40, 1170–1176. DOI: 10.1248/cpb.40.1170.
  • Fisher, M. H.; Lusi, A. Imidazo(1,2-a)pyridine Anthelmintic and Antifungal Agents. J. Med. Chem. 1972, 15, 982–985. DOI: 10.1021/jm00279a026.
  • Rival, Y.; Grassy, G.; Taudou, A.; Ecalle, R. Antifungal Activity in Vitro of Some Imidazo[1,2-a]Pyrimidine Derivatives. Eur. J. Med. Chem. 1991, 26, 13–18. DOI: 10.1016/0223-5234(91)90208-5.
  • Hamdouchi, C.; de Blas, J.; del Prado, M.; Gruber, J.; Heinz, B. A.; Vance, L. 2-Amino-3-Substituted-6-[(E)-1-Phenyl-2-(N-Methylcarbamoyl)Vinyl]Imid Azo[1,2-a]Pyridines as a Novel Class of Inhibitors of Human Rhinovirus: Stereospecific Synthesis and Antiviral Activity. J. Med. Chem. 1999, 42, 50–59. DOI: 10.1021/jm9810405.
  • Rupert, K. C.; Henry, J. R.; Dodd, J. H.; Wadsworth, S. A.; Cavender, D. E.; Olini, G. C.; Fahmy, B.; Siekierka, J. Imidazopyrimidines, Potent Inhibitors of p38 MAP Kinase. Bioorg. Med. Chem. Lett. 2003, 13, 347–350. DOI: 10.1016/S0960-894X(02)01020-X.
  • Badawey, E.; Kappe, T. Benzimidazole Condensed Ring System. IX. Potential Antineoplastics. New Synthesis of Some Pyrido[1,2-α]Benzimidazoles and Related Derivative. Eur. J. Med. Chem. 1995, 30, 327–332. DOI: 10.1016/0223-5234(96)88241-9.
  • Hranjec, M.; Kralj, M.; Piantanida, I.; Sedi, M.; Suman, L.; Pavel, K.; Karminski-Zamola, G. Novel Cyano- and Amidino-Substituted Derivatives of Styryl-2-Benzimidazoles and Benzimidazo[1,2-a]Quinolines. Synthesis, Photochemical Synthesis, DNA Binding, and Antitumor Evaluation, Part 3. J. Med. Chem. 2007, 50, 5696–5711. DOI: 10.1021/jm070876h.
  • Kotovskaya, S. K.; Baskakova, Z. M.; Charushin, V. N.; Chupakhin, O. N.; Belanov, E. F.; Bormotov, N. I.; Balakhnin, S. M.; Serova, O. A. Synthesis and Antiviral Activity of Fluorinated Pyrido[1,2-a]Benzimidazoles. Pharm. Chem. J. 2005, 39, 574–578. DOI: 10.1007/s11094-006-0023-9.
  • Lhassani, M.; Chavignon, O.; Chezal, J.-M.; Teulade, J.-C.; Chapat, J.-P.; Snoeck, R.; Andrei, G.; Balzarini, J.; De Clercq, E.; Gueiffier, A. Synthesis and Antiviral Activity of Imidazo[1,2-a]Pyridines. Eur. J. Med. Chem 1999, 34, 271–274. DOI: 10.1016/S0223-5234(99)80061-0.
  • Enguehard-Gueiffier, C.; Gueiffier, A. Recent Progress in the Pharmacology of Imidazo[1,2-a]Pyridines. Mini Rev Med Chem 2007, 7, 888–899. DOI: 10.2174/138955707781662645.
  • Prostota, Y.; Kachkovsky, O. D.; Reis, L. V.; Santos, P. F. New Unsymmetrical Squaraine Dyes Derived from Imidazo[1,5-a]Pyridine. Dyes Pigm. 2013, 96, 554–562. DOI: 10.1016/j.dyepig.2012.10.006.
  • Ke, C.-H.; Kuo, B.-C.; Nandi, D.; Lee, H. M. Monodentate Palladium Complexes Bearing Abnormal and Normal Carbene Ligands with a Formally Identical Steric Environment. Organometallics 2013, 32, 4775–4784. DOI: 10.1021/om4004219.
  • Bagdi, A. K.; Santra, S.; Monir, K.; Hajra, F. Synthesis of Imidazo[1,2-a]Pyridines: A Decade Update. Chem. Commun. (Camb.) 2015, 51, 1555–1575. DOI: 10.1039/c4cc08495k.
  • Hu, L.; Jiang, J-d.; Qu, J.; Li, Y.; Jin, J.; Li, Z-r.; Boykin, D. W. Novel Potent Antimitotic Heterocyclic Ketones: Synthesis, Antiproliferative Activity, and Structure-Activity Relationships. Bioorg. Med. Chem. Lett. 2007, 17, 3613–3617. DOI: 10.1016/j.bmcl.2007.04.048.
  • Tung, Y.-S.; Coumar, M. S.; Wu, Y.-S.; Shiao, H.-Y.; Chang, J.-Y.; Liou, J.-P.; Shukla, P.; Chang, C.-W.; Chang, C.-Y.; Kuo, C.-C.; et al. Scaffold-Hopping Strategy: Synthesis and Biological Evaluation of 5,6-Fused Bicyclic Heteroaromatics to Identify Orally Bioavailable Anticancer Agents. J. Med. Chem. 2011, 54, 3076–3080. DOI: 10.1021/jm101027s.
  • Hsing-Pang, H.; Yu-Sheng, C.; Jing-Ping, L.; Jang-Yang, C.; Yen-Shih, T. Anti-tumor Compounds. US 2006/0148801 Al, 2006.
  • Shi, W.; Liu, C.; Lei, A. Transition-Metal Catalyzed Oxidative Cross-Coupling Reactions to form C-C Bonds Involving Organometallic Reagents as Nucleophiles. Chem. Soc. Rev. 2011, 40, 2761–2776. DOI: 10.1039/c0cs00125b.
  • Nakamura, I.; Yamamoto, Y. Transition-Metal-Catalyzed Reactions in Heterocyclic Synthesis. Chem. Rev. 2004, 104, 2127–2198. DOI: 10.1021/cr020095i.
  • Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Palladium(II)-Catalyzed C-H Activation/C-C Cross-Coupling Reactions: Versatility and Practicality. Angew. Chem. Int. Ed. Engl. 2009, 48, 5094–5115. DOI: 10.1002/anie.200806273.
  • Liu, Y.; Wan, J.-P. Tandem Reactions Initiated by Copper-Catalyzed Cross-Coupling: A New Strategy Towards Heterocycle Synthesis. Org. Biomol. Chem. 2011, 9, 6873–6894. DOI: 10.1039/c1ob05769c.
  • Monir, K.; Bagdi, A. K.; Mishra, S.; Majee, A.; Hajra, A. Copper(II)-Catalyzed Aerobic Oxidative Coupling between Chalcone and 2-Aminopyridine via C-H Amination: An Expedient Synthesis of 3-Aroylimidazo[1,2-a]Pyridines. Adv. Synth. Catal. 2014, 356, 1105– 1112. DOI: 10.1002/adsc.201300900.
  • Ueda, S.; Nagasawa, H. Facile Synthesis of 1,2,4-Triazoles via a Copper-Catalyzed Tandem Addition-Oxidative Cyclization. J. Am. Chem. Soc. 2009, 131, 15080–15081. DOI: 10.1021/ja905056z.
  • King, A. E.; Huffman, L. M.; Casitas, A.; Costas, M.; Ribas, X.; Stahl, S. S. Copper-Catalyzed Aerobic Oxidative Functionalization of an Arene C-H bond: Evidence for an Aryl-copper(III) Intermediate. J. Am. Chem. Soc. 2010, 132, 12068–12073. DOI: 10.1021/ja1045378.
  • Kaswan, P.; Pericherla, K.; Rajnikant Kumar, A. Synthesis of 3-Aroylimidazo[1,2-a]Pyridines via CuCl2 Catalyzed Tandem Dual Carbon-Nitrogen Bonding. Tetrahedron 2014, 70, 8539–8544. DOI: 10.1016/j.tet.2014.09.067.
  • Couty, F.; Evano, G. In Comprehensive Heterocyclic Chemistry III; Katritzky, A. R., Ramsden, C. A., Scriven, E. F. V., Taylor, R. J. K. Eds.; Elsevier: Oxford, UK, 2008, pp. 409–499.
  • Santra, S.; Bagdi, A. K.; Majee, A.; Hajra, A. Iron(III)‐Catalyzed Cascade Reaction between Nitroolefins and 2‐Aminopyridines: Synthesis of Imidazo[1,2‐a]Pyridines and Easy Access towards Zolimidine. Adv. Synth. Catal. 2013, 355, 1065–1070. DOI: 10.1002/adsc.201201112.
  • Ge, W.; Zhu, X.; Wei, Y. Aerobic Multicomponent Tandem Synthesis of 3‐Sulfenylimidazo[1,2‐a]Pyridines from Ketones, 2‐Aminopyridines, and Disulfides. Eur. J. Org. Chem. 2013, 2013, 6015–6020. DOI: 10.1002/ejoc.201300905.
  • Dömling, A.; Wang, W.; Wang, K. Chemistry and Biology of Multicomponent Reactions. Chem. Rev. 2012, 112, 3083–3135. DOI: 10.1021/cr100233r.
  • Cioc, R. C.; Ruijter, E.; Orru, R. V. A. Multicomponent Reactions: advanced Tools for Sustainable Organic Synthesis. Green Chem. 2014, 16, 2958–2975. DOI: 10.1039/C4GC00013G.
  • Liu, Y. Recent Advances on Diversity-Oriented Heterocycle Synthesis Via Multicomponent Tandem Reactions Based on A3 Coupling ARKIVOC. 2014, 2014(i), 1–20. [doi: http://www.arkat-usa.org/get-file/48824/Recent.]
  • El Akkaoui, A.; Hiebel, M.-A.; Mouaddib, A.; Berteina-Raboin, S.; Guillaumet, G. Straightforward Bienaymé and Copper Catalyzed N-Arylation Sequence to Access Diverse 5H-Pyrido[2′,1′:2,3]Imidazo[4,5-b]Indoles and Analogues. Tetrahedron 2012, 68, 9131–9138. DOI: 10.1016/j.tet.2012.07.081.
  • Yan, H.; Yan, R.; Yang, S.; Gao, X.; Wang, Y.; Huang, G.; Liang, Y. One-pot three-Component Synthesis of 3-Nitro-2-Arylimidazo[1,2-a]Pyridine Derivatives Using Air as an Oxidant. Chem. Asian J. 2012, 7, 2028–2031. DOI: 10.1002/asia.201200319.
  • Yang, A.; Jiang, R.; Khorev, O.; Yu, T.; Zhang, Y.; Ma, L.; Chen, G.; Shen, J.; Meng, T. Palladium‐Catalyzed Route to Three‐Component, One‐Pot Sequential Synthesis of Functionalized Cyclazines: 2,2a1,4‐Triazacyclopenta[Cd]Indenes. Adv. Synth. Catal. 2013, 355, 1984–1988. DOI: 10.1002/adsc.201300309.
  • Tyagi, V.; Khan, S.; Bajpai, V.; Gauniyal, H. M.; Kumar, B.; Chauhan, P. M. S. Skeletal Diverse Synthesis of N-Fused Polycyclic Heterocycles via the Sequence of Ugi-Type MCR and CuI-Catalyzed Coupling/Tandem Pictet-Spengler Reaction. J. Org. Chem. 2012, 77, 1414–1421. DOI: 10.1021/jo202255v.
  • Wang, Y.; Frett, B.; Li, H-y. Efficient Access to 2,3-Diarylimidazo[1,2-a]Pyridines via a One-Pot, Ligand-Free, Palladium-Catalyzed Three-Component Reaction under Microwave Irradiation. Org. Lett. 2014, 16, 3016–3019. DOI: 10.1021/ol501136e.
  • Yan, H.; Wang, Y.; Pan, C.; Zhang, H.; Yang, S.; Ren, X.; Li, J.; Huang, G. Iron(III)‐Catalyzed Denitration Reaction: One‐Pot Three‐Component Synthesis of Imidazo[1,2‐a]Pyridine Derivatives. Eur. J. Org. Chem. 2014, 2014, 2754–2763. DOI: 10.1002/ejoc.201301658.
  • Kaswan, P.; Pericherla, K.; Saini, H. K.; Kumar, A. One-Pot, Three Component Tandem Reaction of 2-Aminopyridines, Acetophenones and Aldehydes: Synthesis of 3-Aroylimidazo[1,2-a]Pyridines. RSC Adv. 2015, 5, 3670–3677. DOI: 10.1039/C4RA13056A.
  • Bagdi, A. K.; Rahman, M.; Santra, S.; Majee, A.; Hajra, A. Copper‐Catalyzed Synthesis of Imidazo[1,2‐a]Pyridines through Tandem Imine Formation‐Oxidative Cyclization under Ambient Air: One‐Step Synthesis of Zolimidine on a Gram‐Scale. Adv. Synth. Catal. 2013, 355, 1741–1747. DOI: 10.1002/adsc.201300298.
  • Pericherla, K.; Kaswan, P.; Khedar, P.; Khungar, B.; Parang, K.; Kumar, A. Copper Catalyzed Tandem Oxidative C–H Amination/Cyclizations: Direct Access to Imidazo[1,2-a]Pyridines. RSC Adv. 2013, 3, 18923–18930. DOI: 10.1039/c3ra43889a.
  • Cai, Z.-J.; Wang, S.-Y.; Ji, S.-J. Copper(I) Iodide/Boron Trifluoride Etherate‐Cocatalyzed Aerobic Dehydrogenative Reactions Applied in the Synthesis of Substituted Heteroaromatic Imidazo[1,2‐a]Pyridines. Adv. Synth. Catal. 2013, 355, 2686–2692. DOI: 10.1002/adsc.201300333.
  • Mohan, D. C.; Donthiri, R. R.; Rao, S. N.; Adimurthy, S. Copper(I) Iodide‐Catalysed Aerobic Oxidative Synthesis of Imidazo[1,2‐a]Pyridines from 2‐Aminopyridines and Methyl Ketones. Adv. Synth. Catal. 2013, 355, 2217–2221. DOI: 10.1002/adsc.201300456.
  • Sun, H.; Zhou, H.; Khorev, O.; Jiang, R.; Yu, T.; Wang, X.; Du, Y.; Ma, Y.; Meng, T.; Shen, J. Three-Component, One-Pot Sequential Synthesis of Functionalized Cyclazines: 3H-1,2a1,3-Triazaacenaphthylenes. J. Org. Chem. 2012, 77, 10745–10751. DOI: 10.1021/jo3021105.
  • Wang, H.; Wang, Y.; Peng, C.; Zhang, J.; Zhu, Q. A Direct Intramolecular C-H amination Reaction Cocatalyzed by Copper(II) and Iron(III) as Part of an Efficient Route for the Synthesis of Pyrido[1,2-a]Benzimidazoles from N-Aryl-2-Aminopyridines. J. Am. Chem. Soc. 2010, 132, 13217–13219. DOI: 10.1021/ja1067993.
  • Li, S.; Wu, J. Synthesis of H-Pyrazolo[5,1-a]Isoquinolines via Copper(II)-Catalyzed Oxidation of an Aliphatic C-H Bond of Tertiary Amine in Air. Org. Lett. 2011, 13, 712–715. DOI: 10.1021/ol102939r.
  • Suib, S. L. Porous Manganese Oxide Octahedral Molecular Sieves and Octahedral Layered Materials. Acc. Chem. Res. 2008, 41, 479–487. DOI: 10.1021/ar7001667.
  • Suib, S. L. Structure, Porosity, and Redox in Porous Manganese Oxide Octahedral Layer and Molecular Sieve Materials. J. Mater. Chem. 2008, 18, 1623–1631. DOI: 10.1039/b714966m.
  • Shen, Y. F.; Zerger, R. P.; DeGuzman, R. N.; Suib, S. L.; McCurdy, L.; Potter, D. I.; O'Young, C. L. Manganese Oxide Octahedral Molecular Sieves: Preparation, Characterization, and Applications. Science 1993, 260, 511–515. DOI: 10.1126/science.260.5107.511.
  • Liu, X.-S.; Jin, Z.-N.; Lu, J.-Q.; Wang, X.-X.; Luo, M.-F. Highly Active CuO/OMS-2 Catalysts for Low-Temperature CO Oxidation. Chem. Eng. J. 2010, 162, 151–157. DOI: 10.1016/j.cej.2010.05.015.
  • Özacar, M.; Poyraz, A. S.; Genuino, H. C.; Kuo, C.-H.; Meng, Y.; Suib, S. L. Influence of Silver on the Catalytic Properties of the Cryptomelane and Ag-Hollandite Types Manganese Oxides OMS-2 in the Low-Temperature CO Oxidation. Appl. Catal. A 2013, 462–463, 64–74. DOI: 10.1016/j.apcata.2013.04.027.
  • Sun, M.; Yu, L.; Ye, F.; Diao, G.; Yu, Q.; Hao, Z.; Zheng, Y.; Yuan, L. Transition Metal Doped Cryptomelane-Type Manganese Oxide for Low-Temperature Catalytic Combustion of Dimethyl Ether. Chem. Eng. J. 2013, 220, 320–327. DOI: 10.1016/j.cej.2013.01.061.
  • Meng, X.; Zhang, J.; Chen, B.; Jing, Z.; Zhao, P. Copper Supported on H+-Modified Manganese Oxide Octahedral Molecular Sieves (Cu/H-OMS-2) as a Heterogeneous Biomimetic Catalyst for the Synthesis of Imidazo[1,2-a]-N-Heterocycles. Catal. Sci. Technol. 2016, 6, 890–896. DOI: 10.1039/C5CY01433F.
  • Piera, J.; Bäckvall, J. E. Catalytic Oxidation of Organic Substrates by Molecular Oxygen and Hydrogen Peroxide by Multistep Electron Transfer-a Biomimetic Approach. Angew. Chem. Int. Ed. Engl. 2008, 47, 3506–3523. DOI: 10.1002/anie.200700604.
  • Babu, B. P.; Meng, X.; Bäckvall, J. E. Aerobic Oxidative Coupling of Arenes and Olefins Through a Biomimetic Approach. Chemistry 2013, 19, 4140–4145. DOI: 10.1002/chem.201300100.
  • Gigant, N.; Bäckvall, J. E. Synthesis of Conjugated Dienes via a Biomimetic Aerobic Oxidative Coupling of Two C(vinyl)-H bonds. Chemistry 2013, 19, 10799–10803. DOI: 10.1002/chem.201301771.
  • Meng, X.; Yu, C.; Chen, G.; Zhao, P. Heterogeneous Biomimetic Aerobic Synthesis of 3-Iodoimidazo[1,2-a]Pyridines via CuOx/OMS-2-Catalyzed Tandem Cyclization/Iodination and Their Late-Stage Functionalization. Catal. Sci. Technol. 2015, 5, 372–379. DOI: 10.1039/C4CY00919C.
  • Oishi, T.; Yamaguchi, K.; Mizuno, N. Conceptual Design of Heterogeneous Oxidation Catalyst: Copper Hydroxide on Manganese Oxide-Based Octahedral Molecular Sieve for Aerobic Oxidative Alkyne Homocoupling. ACS Catal. 2011, 1, 1351–1354. DOI: 10.1021/cs200388v.
  • Fihri, A.; Bouhrara, M.; Nekoueishahraki, B.; Basset, J.-M.; Polshettiwar, V. Nanocatalysts for Suzuki Cross-Coupling Reactions. Chem. Soc. Rev. 2011, 40, 5181–5203. DOI: 10.1039/c1cs15079k.
  • Wang, D.; Astruc, D. The Recent Development of Efficient Earth-Abundant Transition-Metal Nanocatalysts. Chem. Soc. Rev. 2017, 46, 816–854. DOI: 10.1039/c6cs00629a.
  • Liu, L.; Corma, A. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chem. Rev. 2018, 118, 4981–5079. DOI: 10.1021/acs.chemrev.7b00776.
  • Shylesh, S.; Schunemann, V.; Thiel, W. R. Magnetically Separable Nanocatalysts: Bridges between Homogeneous and Heterogeneous Catalysis. Angew. Chem. Int. Ed. Engl. 2010, 49, 3428–3459. DOI: 10.1002/anie.200905684.
  • Ranganath, K. V. S.; Glorius, F. Superparamagnetic Nanoparticles for Asymmetric Catalysis-a Perfect Match. Catal. Sci. Technol. 2011, 1, 13–22. DOI: 10.1039/c0cy00069h.
  • Sharma, R. K.; Gaur, R.; Yadav, M.; Rathi, A. K.; Pechousek, J.; Petr, M.; Zboril, R.; Gawande, M. G. Maghemite‐Copper Nanocomposites: Applications for Ligand‐Free Cross‐Coupling (C − O, C − S, and C − N) Reactions. ChemCatChem 2015, 7, 3495–3502. DOI: 10.1002/cctc.201500546.
  • Nguyen, O. T. K.; Ha, P. T.; Dang, H. V.; Vo, Y. H.; Nguyen, T. T.; Le, N. T. H.; Phan, N. T. S. Superparamagnetic Nanoparticle-Catalyzed Coupling of 2-Amino Pyridines/Pyrimidines with Trans-Chalcones. RSC Adv. 2019, 9, 5501–5511. DOI: 10.1039/C9RA00097F.
  • Kour, D.; Gupta, A.; Kapoor, K. K.; Gupta, V. K.; Singh, D.; Das, P. Iodine–NH4OAc Mediated Regioselective Synthesis of 2-Aroyl-3-Arylimidazo[1,2-a]Pyridines from 1,3-Diaryl-Prop-2-en-1-Ones. Org. Biomol. Chem. 2018, 16, 1330–1336. DOI: 10.1039/c7ob02750h.
  • Xing, M. M.; Xin, M.; Shen, C.; Gao, J. R.; Jia, J. H.; Li, Y. J. Iodine-Promoted Oxidative Coupling Reaction: A Simple and Efficient Process to Access Imidazo[1,2-a]Pyridines from 2-Aminopyridines and Chalcones. Tetrahedron 2016, 72, 4201–4204. DOI: 10.1016/j.tet.2016.05.052.
  • Fei, Z.; Zhu, Y-p.; Liu, M-c.; Jia, F-c.; Wu, A-x. I2-Promoted Direct One-Pot Synthesis of 2-Aryl-3-(Pyridine-2-Ylamino)Imidazo[1,2-a]Pyridines from Aromatic Ketones and 2-Aminopyridines. Tetrahedron Lett. 2013, 54, 1222–1226. DOI: 10.1016/j.tetlet.2012.12.072.
  • Zhang, H.; Jiang, L. Microwave-Assisted Solvent-Free Synthesis of Imidazo[1,2-a]Pyridines via a Three-Component Reaction. Tetrahedron Lett. 2015, 56, 2777–2779. DOI: 10.1016/j.tetlet.2015.04.030.
  • Proença, M. F.; Costa, M. One-Pot Approach to the Synthesis of Novel 12H-Chromeno[2′,3′:4,5]Imidazo[1,2-a]Pyridines in Aqueous Media. Tetrahedron 2010, 66, 4542–4550. DOI: 10.1016/j.tet.2010.04.059.
  • Adib, M.; Sheibani, E.; Bijanzadeh, H. R.; Zhu, L. A New, One-Pot, Multi-Component Synthesis of Imines of 3-Amino-2-Arylimidazo[1,2-a]Pyridines, 3-Amino-2-Arylimidazo[1,2-a]Pyrazines, and 3-Amino-2-Arylimidazo[1,2-a]Pyrimidines. Tetrahedron 2008, 64, 10681–10686. DOI: 10.1016/j.tet.2008.09.002.
  • Li, Y. J.; Huang, H. M.; Dong, H. Q.; Jia, J. H.; Han, L.; Ye, Q.; Gao, J. R. The Synthesis of Benzo[f]Isoindole-1,3-Dicarboxylates via an I2-Induced 1,3-Dipolar Cycloaddition Reaction. J. Org. Chem. 2013, 78, 9424–9430. DOI: 10.1021/jo401652k.
  • Li, Y.; Xu, H.; Xing, M.; Huang, F.; Jia, J.; Gao, J. Iodine-Promoted Construction of Polysubstituted 2,3-Dihydropyrroles from Chalcones and β-Enamine Ketones (Esters). Org. Lett. 2015, 17, 3690–3693. DOI: 10.1021/acs.orglett.5b01652.
  • Dighe, S. U.; Mukhopadhyay, S.; Kolle, S.; Kanojiya, S.; Batra, S. Synthesis of 3,4,5-Trisubstituted Isoxazoles from Morita-Baylis-Hillman Acetates by an NaNO2 /I2 -Mediated Domino Reaction. Angew. Chem. Int. Ed. Engl. 2015, 54, 10926–10930. DOI: 10.1002/anie.201504529.
  • Antonchick, A. P.; Samanta, R.; Kulikov, K.; Lategahn, J. Organocatalytic, Oxidative, Intramolecular C-H Bond Amination and Metal-Free Cross-Amination of Unactivated Arenes at Ambient Temperature. Angew. Chem. Int. Ed. Engl. 2011, 50, 8605–8608. DOI: 10.1002/anie.201102984.
  • Xiao, F.; Chen, H.; Xie, H.; Chen, S.; Yang, L.; Deng, G. J. Iodine-Catalyzed Regioselective 2-Sulfonylation of Indoles with Sodium Sulfinates. Org. Lett. 2014, 16, 50–53. DOI: 10.1021/ol402987u.
  • Zhu, Y.; Li, C.; Zhang, J.; She, M.; Sun, W.; Wan, K.; Wang, Y.; Yin, B.; Liu, P.; Li, J. A Facile FeCl3/I2-Catalyzed Aerobic Oxidative Coupling Reaction: Synthesis of Tetrasubstituted Imidazoles from Amidines and Chalcones. Org. Lett. 2015, 17, 3872–3875. DOI: 10.1021/acs.orglett.5b01854.
  • Nawghare, B. R.; Sakate, S. S.; Lokhande, P. D. A New Method for the Facile Synthesis of Hydroxylated Flavones by Using Allyl Protection. J. Heterocyclic Chem. 2014, 51, 291–302. DOI: 10.1002/jhet.1580.
  • Mishra, S.; Monir, K.; Mitra, S.; Hajra, A. FeCl3/ZnI2-Catalyzed Synthesis of Benzo[d]Imidazo[2,1-b]Thiazole through Aerobic Oxidative Cyclization Between 2-Aminobenzothiazole and Ketone. Org. Lett. 2014, 16, 6084–6087. DOI: 10.1021/ol5028893.
  • Stasyuk, A. J.; Banasiewicz, M.; Cyrański, M. K.; Gryko, D. T. Imidazo[1,2-a]Pyridines Susceptible to Excited State Intramolecular Proton Transfer: One-Pot Synthesis via an Ortoleva-King Reaction. J. Org. Chem. 2012, 77, 5552–5558. DOI: 10.1021/jo300643w.
  • Kour, D.; Khajuria, R.; Kapoor, K. K. Iodine–Ammonium Acetate Promoted Reaction between 2-Aminopyridine and Aryl Methyl Ketones: A Novel Approach Towards the Synthesis of 2-Arylimidazo[1,2-a]Pyridines. Tetrahedron Lett 2016, 57, 4464–4467. DOI: 10.1016/j.tetlet.2016.08.058.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.