Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 23
187
Views
2
CrossRef citations to date
0
Altmetric
Articles

An efficient protocol for the synthesis of oxazine derivatives using a carbocatalyst in aqueous medium

ORCID Icon, , ORCID Icon &
Pages 3592-3602 | Received 23 Mar 2020, Published online: 14 Aug 2020

References

  • Tabuchi, Y.; Ando, Y.; Kanemura, H.; Kawasaki, I.; Ohishi, T.; Koida, M.; Fukuyama, R.; Nakamuta, H.; Ohta, S.; Nishide, K.; et al. Preparation of Novel (Z)-4-Ylidenebenzo[b]Furo[3,2-d][1,3]Oxazines and Their Biological Activity. Bioorg. Med. Chem. 2009, 17, 3959–3967. DOI: 10.1016/j.bmc.2009.04.017.
  • Fensome, A.; Bender, R.; Chopra, R.; Cohen, J.; Collins, M. A.; Hudak, V.; Malakian, K.; Lockhead, S.; Olland, A.; Svenson, K.; et al. Synthesis and Structure − Activity Relationship of Novel 6-Aryl-1,4- Dihydrobenzo[d][1,3]Oxazine-2-Thiones as Progesterone Receptor Modulators Leading to the Potent and Selective Nonsteroidal Progesterone Receptor Agonist Tanaproget#. J. Med. Chem. 2005, 48, 5092–5095. DOI: 10.1021/jm050358b.
  • Zhang, P.; Terefenko, E. A.; Fensome, A.; Zhang, Z.; Zhu, Y.; Cohen, J.; Winneker, R.; Wrobel, J.; Yardley, J. Potent Nonsteroidal Progesterone Receptor Agonists: Synthesis and SAR Study of 6-Aryl Benzoxazines. Bioorganic Med. Chem. Lett. 2002, 12, 787–790. DOI: 10.1016/S0960-894X(02)00025-2.
  • Turgut, Z.; Pelit, E.; Köycü, A. Synthesis of New 1,3-Disubstituted-2,3-Dihydro-1H Naphth[1,2e][1,3] Oxazines. Molecules. 2007, 12, 345–352. DOI: 10.3390/12030345.
  • Zhang, P.; Terefenko, E. A.; Fensome, A.; Wrobel, J.; Winneker, R.; Lundeen, S.; Marschke, K. B.; Zhang, Z. 6. Aryl-1,4-Dihydro-Benzo[d][1,3]Oxazin-2-Ones: A Novel Class of Potent, Selective, and Orally Active Nonsteroidal Progesterone Receptor Antagonists. J. Med. Chem. 2002, 45, 4379–4382. DOI: 10.1021/jm025555e.
  • Mondal, A.; Rana, S.; Mukhopadhyay, C. One-Pot, Expeditious and Chromatography-Free Synthesis of New Chromeno[4,3-e][1,3]Oxazine Derivatives Catalyzed by Reusable TiO2 Nanopowder at Room Temperature. Tetrahedron Lett. 2014, 55, 3498–3502. DOI: 10.1016/j.tetlet.2014.04.099.
  • Liu, P.; Lei, M.; Hu, L. Synthesis of Benzo-Annulated 1,3-Oxazine Derivatives through the Multi-Component Reaction of Arynes with N-Heteroaromatics and Aldehydes or Ketones. Tetrahedron. 2013, 69, 10405–10413. DOI: 10.1016/j.tet.2013.09.092.
  • Nikpassand, M.; Fekri, L. Z.; Pourahmad, A. One-Pot Synthesis of New Azo-Linked 4H-Benzo[d][1,3] Oxazine-2,4-Diones from Carbon Dioxide Using CuO@RHA/MCM-41 Nanocomposite in Green Media. J. CO2 Util. 2018, 27, 320–325. DOI: 10.1016/j.jcou.2018.08.011.
  • Carramiñana, V.; Ochoa de Retana, A. M.; de los Santos, J. M.; Palacios, F. First Synthesis of Merged Hybrids Phosphorylated Azirino[2,1-b]Benzo[e][1,3]Oxazine Derivatives as Anticancer Agents. Eur. J. Med. Chem. 2020, 185, 111771. DOI: 10.1016/j.ejmech.2019.111771.
  • Kasatkina, S.; Stepanova, E.; Dmitriev, M.; Mokrushin, I.; Maslivets, A. Divergent Synthesis of (Quinoxalin-2-yl)-1,3-Oxazines and Pyrimido[1,6-a]Quinoxalines via the Cycloaddition Reaction of Acyl(Quinoxalinyl)Ketenes. Tetrahedron Lett. 2019, 60, 151088. DOI: 10.1016/j.tetlet.2019.151088.
  • Rezaei, A.; Akhavan, O.; Hashemi, E.; Shamsara, M. Ugi Four-Component Assembly Process: An Efficient Approach for One-Pot Multifunctionalization of Nanographene Oxide in Water and Its Application in Lipase Immobilization. Chem. Mater. 2016, 28, 3004–3016. DOI: 10.1021/acs.chemmater.6b00099.
  • Geim, A.; Novoselov, K. The Rise of Graphene. Nature Mater. 2007, 6, 183–191. DOI: 10.1038/nmat1849.
  • Jia, H.; Dreyer, D. R.; Bielawski, C. W. Graphite Oxide as an Auto‐Tandem Oxidation–Hydration–Aldol Coupling Catalyst. Adv. Synth. Catal. 2011, 353, 528–532. DOI: 10.1002/adsc.201000748.
  • Santra, S.; Hota, P. K.; Bhattacharyya, R.; Bera, P.; Ghosh, P.; Mandal, S. K. Palladium Nanoparticles on Graphite Oxide: A Recyclable Catalyst for the Synthesis of Biaryl Cores. ACS Catal. 2013, 3, 2776–2789. DOI: 10.1021/cs400468h.
  • Bai, L. S.; Gao, X. M.; Zhang, X.; Sun, F. F.; Ma, N. Reduced Graphene Oxide as a Recyclable Catalyst for Dehydrogenation of Hydrazo Compounds. Tetrahedron Lett. 2014, 55, 4545–4548. DOI: 10.1016/j.tetlet.2014.06.097.
  • Gao, Y.; Ma, D.; Wang, C.; Guan, J.; Bao, X. Reduced Graphene Oxide as a Catalyst for Hydrogenation of Nitrobenzene at Room Temperature. Chem. Commun. (Camb). 2011, 47, 2432–2434. DOI: 10.1039/C0CC04420B.
  • Gupta, S.; Banu, R.; Ameta, C.; Ameta, R.; Punjabi, P. B. Emerging Trends in the Syntheses of Heterocycles Using Graphene-Based Carbocatalysts: An Update. Top Curr Chem (Cham). 2019, 377, 13. DOI: 10.1007/s41061-019-0238-3.
  • Rai, V. K.; Mahata, S.; Kashyap, H.; Singh, M.; Rai, A. Bio-Reduction of Graphene Oxide: Catalytic Applications of (Reduced) GO in Organic Synthesis. Cos. 2020, 17, 164–191. DOI: 10.2174/1570179417666200115110403.
  • Wang, M.; Song, X.; Ma, N. Reduced Graphene Oxide as Recyclable Catalyst for Synthesis of Bis(Aminothiocarbonyl)Disulfides from Secondary Amines and Carbon Disulfide. Catal. Lett. 2014, 144, 1233–1239. DOI: 10.1007/s10562-014-1257-x.
  • Gupta, S.; Khanna, G.; Khurana, J. M. A Facile Eco-Friendly Approach for the One-Pot Synthesis of 3,4-Dihydro-2H-Naphtho[2,3-e][1,3]Oxazine-5. Environ. Chem. Lett. 2016, 14, 559–564. DOI: 10.1007/s10311-016-0570-6.
  • Khanna, G.; Saluja, P.; Khurana, J. M. A Facile and Convenient Approach for the Synthesis of Novel Sesamol–Oxazine and Quinoline–Oxazine Hybrids. Aust. J. Chem. 2017, 70, 1285–1290. DOI: 10.1071/CH17272.
  • Hummers, W. S.; Offeman, R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339. DOI: 10.1021/ja01539a017.
  • Khurana, I.; Shaw, A. K.; Bharti; Khurana, J. M.; Rai, P. K. Batch and Dynamic Adsorption of Eriochrome Black T from Water on Magnetic Graphene Oxide: Experimental and Theoretical Studies. J. Environ. Chem. Eng. 2018, 6, 468–477. DOI: 10.1016/j.jece.2017.12.029.
  • Li, Y.; Gao, W.; Ci, L.; Wang, C.; Ajayan, P. M. Catalytic Performance of Pt Nanoparticles on Reduced Graphene Oxide for Methanol Electro-Oxidation. Carbon 2010, 48, 1124–1130. DOI: 10.1016/j.carbon.2009.11.034.
  • Chandra, S.; Bag, S.; Das, P.; Bhattacharya, D.; Pramanik, P. Fabrication of Magnetically Separable Palladium–Graphene Nanocomposite with Unique Catalytic Property of Hydrogenation. Chem. Phys. Lett. 2012, 519–520, 59–63. DOI: 10.1016/j.cplett.2011.11.017.
  • Mills, P.; Sullivan, J. L. A Study of the Core level electrons in Iron and Its Three Oxides by Means of X-Ray Photoelectron Spectroscopy. J. Phys. D: Appl. Phys. 1983, 16, 723–732. DOI: 10.1088/0022-3727/16/5/005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.