Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 23
493
Views
6
CrossRef citations to date
0
Altmetric
Articles

Synthesis of 6- and 7-alkoxy-4-methylcoumarins from corresponding hydroxy coumarins and their conversion into 6- and 7-alkoxy-4-formylcoumarin derivatives

ORCID Icon & ORCID Icon
Pages 3603-3615 | Received 20 Jul 2020, Published online: 14 Aug 2020

References

  • Miri, R.; Nejati, M.; Saso, L.; Khakdan, F.; Parshad, B.; Mathur, D.; Parmar, V. S.; Bracke, M. E.; Prasad, A. K.; Sharma, S. K.; et al. Structure-Activity Relationship Studies of 4-Methylcoumarin Derivatives as Anticancer Agents. Pharm. Biol. 2016, 54, 105–110. DOI: 10.3109/13880209.2015.1016183.
  • Togna, A. R.; Firuzi, O.; Latina, V.; Parmar, V. S.; Prasad, A. K.; Salemme, A.; Togna, G. I.; Saso, L. 4-Methylcoumarin Derivatives with anti-Inflammatory Effects in Activated Microglial Cells. Biol. Pharm. Bull. 2014, 37, 60–66. DOI: 10.1248/bpb.b13-00568.
  • Pedersen, J. Z.; Oliveira, C.; Incerpi, S.; Kumar, V.; Fiore, A. M.; De Vito, P.; Prasad, A. K.; Malhotra, S. V.; Parmar, V. S.; Saso, L. Antioxidant Activity of 4-Methylcoumarins. J. Pharm. Pharmacol. 2007, 59, 1721–1728. DOI: 10.1211/jpp.59.12.0015.
  • Celikezen, F. C.; Orek, C.; Parlak, A. E.; Sarac, K.; Turkez, H.; Tozlu, Ö. Ö. Synthesis, Structure, Cytotoxic and Antioxidant Properties of 6-Ethoxy-4-Methylcoumarin. J. Mol. Struct. 2020, 1205, 127577. DOI: 10.1016/j.molstruc.2019.127577.
  • Mosa, A. I.; Ibrahim, M. M.; Aldhlmani, S. A. Spectroscopic and Solution Studies of Some Transition Metal Complexes of New 4-Hydroxy Coumarin Semi- and Thiosemicarbazone Complexes. J. Solution Chem. 2013, 42, 2364–2383. DOI: 10.1007/s10953-013-0108-5.
  • Maddireddy, M.; Kulkarni, A. D.; Bagihalli, G. B.; Malladi, S. Thiosemicarbazone Scaffold as a Multidentate Ligand for Transition-Metal Ions: Synthesis, Characterization, in Vitro Antimicrobial, Anthelmintic, DNA Cleavage, and Cytotoxic Studies. Helv. Chim. Acta. 2016, 99, 562–572. DOI: 10.1002/hlca.201600045.
  • Kenny, R. S.; Mashelkar, U. C. Synthesis of 2-Aryl and Coumarin Substituted Benzothiazole Derivatives. J. Heterocycl. Chem. 2006, 43, 1367–1369. DOI: 10.1002/jhet.5570430535.
  • Kumbar, S. S.; Hosamani, K. M.; Gouripur, G. C.; Joshi, S. D. Functionalization of 3-Chloroformylcoumarin to Coumarin Schiff Bases Using Reusable Catalyst: An Approach to Molecular Docking and Biological Studies. R. Soc. Open Sci. 2018, 5, 172416–172416. DOI: 10.1098/rsos.172416.
  • Tegtmeier, M.; Legrum, W. 7-Aminocoumarins Are Substrates of Cytochrome P450-Isozymes. Arch. Pharm. Pharm. Med. Chem. 1998, 331, 143–148. DOI: 10.1002/.(sici)1521-4184(199804)331:4 < 143::aid-ardp143 > 3.0.co;2-d
  • von Pechmann, H.; Duisberg, C. Ueber Die Verbindungen Der Phenole Mit Acetessigäther. Ber. Dtsch. Chem. Ges. 1883, 16, 2119–2128. DOI: 10.1002/cber.188301602117.
  • Russell, A.; Frye, J. R.; Dihydroxyacetophenone, Org. Synth. 1941, 21, 22.
  • Stoyanov, E.; Mezger, J. Pechmann Reaction Promoted by Boron Trifluoride Dihydrate. Molecules. 2005, 10, 762–766. DOI: 10.3390/10070762.
  • Corrie, J. E. T. A Convenient Synthesis of N-(7-Dimethylamino-4-Methylcoumarin-3-yl)-Maleimide Incorporating a Novel Variant of the Pechmann Reaction. J. Chem. Soc, Perkin Trans. 1990, 1, 2151–2152. DOI: 10.1039/P19900002151.
  • Shockravi, A.; Heravi, M. M.; Valizadeh, H. An Efficient and Convenient Synthesis of Furocoumarins via Pechmann Reaction on ZnCl2/Al2O3 under Microwave Irradiation. Phos, Sulfur Relat. Elem. 2003, 178, 143–147. DOI: 10.1080/10426500307819.
  • Smitha, G.; Sanjeeva Reddy, C. ZrCl4‐Catalyzed Pechmann Reaction: Synthesis of Coumarins under Solvent‐Free Conditions. Synth. Commun. 2004, 34, 3997–4003. DOI: 10.1081/SCC-200034821.
  • Rodríguez-Domínguez, J. C.; Kirsch, G. Zirconyl Chloride: A Useful Catalyst in the Pechmann Coumarin Synthesis. Synthesis. 2006, 2006, 1895–1897. DOI: 10.1055/s-2006-942362.
  • Li, T.-S.; Zhang, Z.-H.; Yang, F.; Fu, C.-G. Montmorillonite Clay Catalysis. Part 7.1 an Environmentally Friendly Procedure for the Synthesis of Coumarins via Pechmann Condensation of Phenols with Ethyl Acetoacetate†. J. Chem. Res. 1998, 38–39. DOI: 10.1039/A703694I.
  • Valizadeh, H.; Kordi, F. M.; Gholipur, H.; Amiri, M. Microwave-Assisted Synthesis of Coumarins via Pechmann Condensation in Wet Phosphoric Acid Imidazolium Dihydrogenphosphate. Phos. Sulfur Relat. Elem. 2009, 184, 3075–3081. DOI: 10.1080/10426500802667125.
  • Potdar, M. K.; Mohile, S. S.; Salunkhe, M. M. Coumarin Syntheses via Pechmann Condensation in Lewis Acidic Chloroaluminate Ionic Liquid. Tetrahedron Lett. 2001, 42, 9285–9287. DOI: 10.1016/S0040-4039(01)02041-X.
  • Singh, V.; Singh, J.; Preet Kaur, K.; Kad, G. L. Acceleration of the Pechmann Reaction by Microwave Irradiation: Application to the Preparation of Coumarins. J. Chem. Res. Sinop. 1997, 58–59. DOI: 10.1039/A605672E.
  • Naik, R. M.; Thakor, V. M. Formylation of Benzopyrones. I. Formylation of Hydroxycoumarins with Hexamethylenetetramine. J. Org. Chem. 1957, 22, 1626–1629. DOI: 10.1021/jo01363a024.
  • Bochkov, A. Y.; Akchurin, I. O.; Traven, V. F. A New Facile Way for the Preparation of 3-Formylcoumarins. Heterocycl. Commun. 2017, 23, 75–78. DOI: 10.1515/hc-2017-0038.
  • Lim, N. C.; Schuster, J. V.; Porto, M. C.; Tanudra, M. A.; Yao, L.; Freake, H. C.; Brückner, C. Coumarin-Based Chemosensors for Zinc(II): toward the Determination of the Design Algorithm for CHEF-Type and Ratiometric probes. Inorg. Chem. 2005, 44, 2018–2030. DOI: 10.1021/ic048905r.
  • Lin, W.; Yuan, L.; Feng, J.; Cao, X. A Fluorescence-Enhanced Chemodosimeter for Fe3+ Based on Hydrolysis of Bis(Coumarinyl) Schiff Base. Eur. J. Org. Chem. 2008, 2008, 2689–2692. DOI: 10.1002/ejoc.200800077.
  • Hou, J.-T.; Li, K.; Liu, B.-Y.; Liao, Y.-X.; Yu, X.-Q. The First Ratiometric Probe for Lysine in Water. Tetrahedron. 2013, 69, 2118–2123. DOI: 10.1016/j.tet.2013.01.010.
  • Boehm, T.; Schumann, G.; Hansen, H. H. Untersuchungen in Der Kumarinreihe. 2. Synthese Einiger Kumarinaldehyde; Mit Bemerkungen Über Die Katalytische Hydrierung Der Säurechloride. Arch. Pharm. Pharm. Med. Chem. 1933, 271, 490–513. DOI: 10.1002/ardp.19332710808.
  • Rene, L.; Lefebvre, A.; Auzou, G. An Easy Conversion of 2H-Chromenes into Coumarins. An Entry to 3-Formyl Coumarins. Synthesis 1986, 1986, 567–569. DOI: 10.1055/s-1986-31707.
  • KirpichëNok, M. A.; Baukulev, V. M.; Karandashova, L. A.; Grandberg, I. I. Synthesis and Spectral and Luminescent Properties of 3-Formyl-7-Dialkylaminocoumarins. Chem. Heterocycl. Compd. 1991, 27, 1193–1199. DOI: 10.1007/BF00471743.
  • Olomola, T. O.; Klein, R.; Kaye, P. T. Convenient Synthesis of 3-Methylcoumarins and Coumarin-3-Carbaldehydes. Synth. Commun. 2012, 42, 251–257. DOI: 10.1080/00397911.2010.523491.
  • Ito, K.; Nakajima, K. Selenium Dioxide Oxidation of Alkylcoumarins and Related Methyl-Substituted Heteroaromatics. J. Heterocycl. Chem. 1988, 25, 511–515. DOI: 10.1002/jhet.5570250229.
  • Von Strandtmann, M.; Connor, D.; Shavel, J. Heterocyclic Syntheses with β-Ketosulfoxides. III. New Syntheses of Coumarins and Carbostyrils. J. Heterocycl. Chem. 1972, 9, 175–176. DOI: 10.1002/jhet.5570090139.
  • Ito, K.; Maruyama, J. Studies on Stable Diazoalkanes as Potential Fluorogenic Reagents. I. 7-Substituted 4-Diazomethylcoumarins. Chem. Pharm. Bull. 1983, 31, 3014–3023. DOI: 10.1248/cpb.31.3014.
  • Holiyachi, M.; Shastri, S. L.; Chougala, B. M.; Shastri, L. A. Effects of Base for the Efficient Synthesis of 4-Formylcoumarins and 4-Formylcarbostyrils. Synth. Commun. 2015, 45, 1002–1008. DOI: 10.1080/00397911.2014.981754.
  • Kornblum, N.; Jones, W. J.; Anderson, G. J. A New and Selective Method of Oxidation. the Conversion of Alkyl Halides and Alkyl Tosylates to Aldehydes. J. Am. Chem. Soc. 1959, 81, 4113–4114. DOI: 10.1021/ja01524a080.
  • Kornblum, N.; Powers, J. W.; Anderson, G. J.; Jones, W. J.; Larson, H. O.; Levand, O.; Weaver, W. M. A New and Selective Method of Oxidation. J. Am. Chem. Soc. 1957, 79, 6562–6562. DOI: 10.1021/ja01581a057.
  • Lin, W.; Long, L.; Feng, J.; Wang, B.; Guo, C. Synthesis meso-Coumarin-Conjugated Porphyrins and Investigation of Their Luminescence Properties. Eur. J. Org. Chem. 2007, 2007, 4301–4304. DOI: 10.1002/ejoc.200700475.
  • Riley, H. L.; Morley, J. F.; Friend, N. A. C. 255. Selenium Dioxide, a New Oxidising Agent. Part I. Its Reaction with Aldehydes and Ketones. J. Chem. Soc. 1932, 1875–1883. DOI: 10.1039/JR9320001875.
  • Waitkins, G. R.; Clark, C. W. Selenium Dioxide: Preparation, Properties, and Use as Oxidizing Agent. Chem. Rev. 1945, 36, 235–289. DOI: 10.1021/cr60115a001.
  • Hussein, D. M.; Al-Juboory, S. B.; Razzak Mahmood Kubba, A. A. Synthesis, Characterization and Antibacterial Evaluation with Computational Study of New Schiff Bases Derived from 7-Hydroxy-4-Methyl Coumarin. Orient. J. Chem. 2017, 33, 768–782. DOI: 10.13005/ojc/330224.
  • Matsui, T.; Tahara, S.; Nakayama, M. Oxidation Products of β-Methyl-Substituted δ-Lactones Using Benzeneseleninic Anhydride and Selenium Dioxide. BCSJ. 1984, 57, 3355–3356. DOI: 10.1246/bcsj.57.3355.
  • Soares, A. M. S.; Costa, S. P. G.; Gonçalves, M. S. T. 2-Oxo-2H-Benzo[h]Benzopyran as a New Light Sensitive Protecting Group for Neurotransmitter Amino Acids. Amino Acids. 2010, 39, 121–133. DOI: 10.1007/s00726-009-0383-z.
  • El Azab, I. H.; Youssef, M. M.; Amin, M. A. Microwave-Assisted Synthesis of Novel 2H-Chromene Derivatives Bearing Phenylthiazolidinones and Their Biological Activity Assessment. Molecules. 2014, 19, 19648–19664. DOI: 10.3390/molecules191219648.
  • Wang, W.; Li, H. An Efficient Synthesis of the Intrinsic Fluorescent Peptide Labels, (S)- and (R)-(6,7-Dimethoxy-4-Coumaryl)Alanines via Asymmetric Hydrogenations. Tetrahedron Lett. 2004, 45, 8479–8481. DOI: 10.1016/j.tetlet.2004.09.093.
  • Gabr, M. T. Antioxidant, α-Glucosidase Inhibitory and in Vitro Antitumor Activities of Coumarin-Benzothiazole Hybrids. Heterocycl. Commun. 2018, 24, 243–247. DOI: 10.1515/hc-2018-0101.
  • Shirley, H. J.; Bray, C. D. Spiroketal Formation by Cascade Oxidative Dearomatization: An Ap-Proach to the Phorbaketal Skeleton. Eur. J. Org. Chem. 2016, 2016, 1504–1507. DOI: 10.1002/ejoc.201501370.
  • Moorthy, J. N.; Venkatakrishnan, P.; Singh, A. S. Molecular Self-Assembly: 4-Formylcoumarins as Versatile Skeletons for Complementary Multipoint Association via Weak (C–H⋯O, C–H⋯F and C–X⋯O = C) Interactions. CrystEngComm. 2003, 5, 507–513. DOI: 10.1039/B315065H.
  • Wang, T.; Zhao, Y.; Shi, M.; Wu, F. The Synthesis of Novel Coumarin Dyes and the Study of Their Photoreaction Properties. Dyes Pigm. 2007, 75, 104–110. DOI: 10.1016/j.dyepig.2006.04.019.
  • Wang, Z. Williamson Ether Synthesis. Comprehensive Organic Name Reactions and Reagents. 2010, 3026–3030.
  • Mandal, S.; Mandal, S.; Ghosh, S. K.; Sar, P.; Ghosh, A.; Saha, R.; Saha, B. A Review on the Advancement of Ether Synthesis from Organic Solvent to Water. RSC Adv. 2016, 6, 69605–69614. DOI: 10.1039/C6RA12914E.
  • Ouellette, R. J.; Rawn, J. D.; 16 - Ethers and Epoxides. In Organic Chemistry Study Guide; Ouellette, R. J., Rawn, J. D., Eds. Elsevier: Boston, 2015, pp 277–297.
  • López-Castillo, N. N.; Rojas-Rodríguez, A. D.; Porta, B. M.; Cruz-Gómez, M. J. Process for the Obtention of Coumaric Acid from Coumarin: Analysis of the Reaction Conditions. ACES. 2013, 03, 195–201. DOI: 10.4236/aces.2013.33025.
  • Murray, R.; Mendez, J.; Brown, S. The Natural Coumarins; John Wiley & Sons: Chichester, 1997.
  • Ivanova, D.; Gaudon, C.; Rossin, A.; Bourguet, W.; Gronemeyer, H. RAR–RXR Selectivity and Biological Activity of New Retinoic Acid Analogues with Heterocyclic or Polycyclic Aromatic Systems. Bioorg. Med. Chem. 2002, 10, 2099–2102. DOI: 10.1016/S0968-0896.(02)00083-4.
  • Ramesh, D.; Srinivasan, M. Studies on Ring Opening of Coumarins. Curr. Sci. 1984, 53, 369–371. www.jstor.org/stable/24086858.
  • Nguyen, D. T.; Do, S. H.; Vu, T. N. B.; Pham, T. T. H.; Nguyen, T. K. D.; Nguyen, T. M.; Tran, T. D.; Hoang, T. K. V.; Vu, N. T.; Nguyen, H. H.; et al. Synthesis and Structure of Some Substituted 2-Amino-4-Aryl-7-Propargyloxy-4H-Chromene-3-Carbonitriles. Synth. Commun. 2019, 49, 102–117. DOI: 10.1080/00397911.2018.1543779.
  • Loupy, A. Microwaves in Organic Synthesis; Wiley‐VCH Verlag GmbH & Co. KGaA: Weinheim, 2002, pp. 499.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.